cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073694 Numbers k such that the number of divisors of k equals the number of anti-divisors of k.

Original entry on oeis.org

5, 32, 50, 162, 512, 1984, 2450, 3784, 5408, 7564, 9248, 15488, 19208, 22684, 26680, 30752, 53792, 79600, 85698, 102604, 113764, 131584, 189112, 199712, 279752, 336200, 435244, 514098, 546012, 581042, 658952, 712818, 727218, 752764, 767560
Offset: 1

Views

Author

Jason Earls, Aug 30 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			32 is here since it has 6 divisors: {1, 2, 4, 8, 16, 32} and 6 anti-divisors: {3, 5, 7, 9, 13, 21}.
		

Crossrefs

Programs

  • Mathematica
    atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[770000], DivisorSigma[0, #] == atd[#] &] (* Jayanta Basu, Jul 06 2013 *)
  • PARI
    {for(n=1,770000,v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2,matsize(ds)[2]-1, if(ds[k]%2>0,v1=concat(v1,ds[k]))); ds=divisors(2*n); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0, v2=concat(v2,ds[k]))); ds=divisors(2*n+1); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0,v3=concat(v3,ds[k]))); v=vecsort(concat(v1,concat(v2,v3))); if(matsize(v)[2]==numdiv(n),print1(n,",")))}

Extensions

Edited and extended by Klaus Brockhaus, Sep 01 2002