cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073700 a(1) = 1, a(n) = Floor[(Sum of composite numbers up to n)/(Sum of primes up to n)].

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Aug 12 2002

Keywords

Comments

Though the sequence is not monotonically increasing the average value increases and a derived sequence could be the smallest value of k for which a(k) = n.
Note 1 is neither composite nor prime.

Examples

			a(10) = floor((4+6+8+9+10)/(2+3+5+7)) = floor(37/17) = 2.
		

Crossrefs

Programs

  • Maple
    a := 0:b := 0:for i from 2 to 300 do if isprime(i) then a := a+i: else b := b+i:fi: c[i] := floor(b/a):od:c[1] := 1:seq(c[j],j=1..300);
  • Mathematica
    Module[{nn=110,pr,comp},pr=Prime[Range[PrimePi[nn]]];comp=Complement[Range[ 2,nn], pr]; Join[{1}, Table[Floor[Total[Select[comp,#<=n&]]/Total[Select[pr,#<=n&]]],{n,2,nn}]]] (* Harvey P. Dale, Feb 22 2013 *)
    Join[{1}, Table[t1 = Select[x = Range[n], PrimeQ]; Floor[Divide @@ Plus @@@ {Rest[Complement[x, t1]], t1}], {n, 2, 105}]] (* Jayanta Basu, Jul 07 2013 *)

Formula

a(n) = floor(A101256(n)/A034387(n)). - Jason Yuen, Aug 20 2024

Extensions

More terms from Sascha Kurz, Aug 15 2002