A073720 Let b(1) = 1, b(k+1) = b(k) - k*trunc(k/b(k)+1), where trunc(x) = floor(x) if x>= 0, trunc(x) = ceiling(x) otherwise. Sequence a(n) gives the successive absolute values taken by b(k).
1, 11, 58, 293, 1468, 7343, 36718, 183593, 917968, 4589843, 22949218, 114746093, 573730468, 2868652343, 14343261718, 71716308593, 358581542968, 1792907714843, 8964538574218, 44822692871093, 224113464355468
Offset: 1
Keywords
Formula
It appears that for n>1 a(n)=( 47*5^(n-2)-3 )/4 and if 2*a(n-1)+1 < k < 2*a(n)+1, then b(k)= -a(n), if k = 2*a(n)+1 b(k)= +a(n).
Empirical g.f.: -x*(3*x^2-5*x-1) / ((x-1)*(5*x-1)). - Colin Barker, Jun 17 2013