cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A073721 Numbers k such that PrimePi(k) divides sigma(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 14, 15, 21, 29, 38, 44, 57, 66, 78, 92, 94, 95, 106, 108, 114, 116, 118, 120, 133, 154, 174, 177, 182, 188, 232, 255, 300, 304, 305, 349, 351, 359, 413, 417, 418, 468, 488, 506, 526, 595, 615, 629, 688, 872, 945, 954, 1001, 1002, 1006, 1011, 1018
Offset: 1

Views

Author

Labos Elemer, Aug 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s==0, Print[n]], {n, 1, 2500}]
    Select[Range[2,1200],Divisible[DivisorSigma[1,#],PrimePi[#]]&] (* Harvey P. Dale, Jan 31 2014 *)
  • PARI
    isok(k) = k > 1 && !(sigma(k) % primepi(k)); \\ Amiram Eldar, Mar 18 2025
    
  • PARI
    list(lim) = {my(prv = 2, i = 0); forprime(p = 3, lim, i++; for(k = prv, p-1, if(!(sigma(k) % i), print1(k, ", "))); prv = p);} \\ Amiram Eldar, Mar 18 2025

Formula

{k : A000203(k)/A000720(k) is an integer}.
Showing 1-1 of 1 results.