A073747 Decimal expansion of coth(1).
1, 3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9
Offset: 1
Examples
1.31303528549933130363616124693...
References
- Samuel M. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Hideyuki Ohtsuka, Problem 11853, The American Mathematical Monthly, Vol. 122, No. 7 (2015), p. 700; A Hyperbolic Sine Series, Solutions to Problem 11853 by Tewodros Amdeberhan and Rituraj Nandan, ibid., Vol. 124, No. 5 (2017), p. 469.
- Allen Stenger, Experimental math for Math Monthly problems, The American Mathematical Monthly, Vol. 124, No. 2 (2017), pp. 116-131; alternative link.
- Eric Weisstein's World of Mathematics, Hyperbolic Cotangent.
- Eric Weisstein's World of Mathematics, Hyperbolic Functions.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[Coth[1],10,120][[1]] (* or *) RealDigits[ FromContinuedFraction[ Range[1,1001,2]],10,120][[1]] (* Harvey P. Dale, Oct 15 2011 *) (* see Comments, above, for the second program *)
-
PARI
1/tanh(1)
Formula
Equals 1 + Sum_{n>=1} (2^(2*n)*B(2*n))/(2*n)! = 1 + Sum_{n>=1} (-1)^(n+1)*2*(A046988(n+1) / A002432(n+1)). - Terry D. Grant, May 30 2017
Equals 1 + BesselI(3/2, 1)/BesselI(1/2, 1). - Terry D. Grant, Jun 18 2018
Equals 1 + Sum_{k>=1} csch(2^k) (Ohtsuka, 2015; Stenger, 2017). - Amiram Eldar, Oct 04 2021
Comments