A073755 Number of steps needed to reach a prime when the following map is repeatedly applied to n: if n is even then 2n + int(sqrt(n)) + 1, otherwise 2n - int(sqrt(n)) - 1; or -1 if no prime is ever reached.
10, 2, 1, 1, 9, 1, 1, 4, 2, 2, 5, 28, 3, 8, 1, 1, 1, 17, 2, 1, 27, 1, 1, 34, 7, 2, 4, 12, 4, 3, 2, 16, 2, 2, 1, 1, 1, 1, 12, 4, 9, 1, 33, 1, 6, 12, 1, 26, 2, 16, 11, 5, 21, 4, 2, 2, 6, 8, 15, 2, 3, 6, 1, 11, 3, 27, 2, 4, 1, 15, 2, 1, 1, 3, 12, 2, 2, 1, 8, 2, 7, 3, 6, 3, 16, 11, 4, 2, 25, 8, 4, 10
Offset: 2
Examples
For n=3, a(3)=2 because 3 -> 4 -> 11
Links
- Sean A. Irvine, Table of n, a(n) for n = 2..1000
Programs
-
UBASIC
10 cls 30 for I=2 to 100 32 H=I 40 if odd(H)=1 then goto 90 else goto 50 50 A=2*H+int(sqrt(H))+1:K=K+1 60 if prmdiv(A)=A then print I,K:goto 120 65 if K>1000 then print I,0:goto 120 70 H=A:goto 40 90 A=2*H-int(sqrt(H))-1:K=K+1 100 if prmdiv(A)=A then print I,K:goto 120 105 if K>1000 then print I,0:goto 120 110 H=A:goto 40 120 K=0 130 next