A073773 Number of plane binary trees of size n+2 and height n.
0, 0, 0, 6, 40, 152, 480, 1376, 3712, 9600, 24064, 58880, 141312, 333824, 778240, 1794048, 4096000, 9273344, 20840448, 46530560, 103284736, 228065280, 501219328, 1096810496, 2390753280, 5192548352, 11240734720, 24259854336
Offset: 0
Keywords
Examples
a(3) = 6 because there exists only these six binary trees of size 5 and height 3: _\/\/_______\/\/_\/_\/_____\/_\/_\/___\/___V_V___ __\/_\/___\/_\/___\/_\/___\/_\/___\/_\/___\/_\/__ ___\./_____\./_____\./_____\./_____\./_____\./___
Links
- Henry Bottomley & Antti Karttunen Derivations of the formulas for the diagonals of A073345 & A073346.
Programs
-
Maple
A073773 := n -> `if`((n < 3),0,((n^2 - 6)*2^(n-2)));
Formula
a(n) = A073345(n+2, n).
a(n < 3) = 0, a(n) = ((n^2 - 6)*2^(n-2)).