A073782 a(n) = Sum_{k=0..n} S(k)*S(n-k), convolution of S=A001644 with itself.
9, 6, 19, 48, 89, 190, 391, 784, 1577, 3142, 6219, 12256, 24041, 46974, 91471, 177568, 343753, 663814, 1278979, 2459152, 4719417, 9041470, 17294039, 33030320, 62999145, 120006214, 228327099, 433939904, 823854793, 1562602238
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,0,-3,-2,-1).
Crossrefs
Cf. A001644.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-2*x-x^2)^2/(1-x-x^2-x^3)^2 )); // G. C. Greubel, Apr 12 2019 -
Mathematica
CoefficientList[Series[(3-2x-x^2)^2/(1-x-x^2-x^3)^2, {x, 0, 30}], x]
-
PARI
my(x='x+O('x^30)); Vec((3-2*x-x^2)^2/(1-x-x^2-x^3)^2) \\ G. C. Greubel, Apr 12 2019
-
Sage
((3-2*x-x^2)^2/(1-x-x^2-x^3)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 12 2019
Formula
G.f.: (3-2*x-x^2)^2/(1-x-x^2-x^3)^2.