A073785 Numbers in base -3.
0, 1, 2, 120, 121, 122, 110, 111, 112, 100, 101, 102, 220, 221, 222, 210, 211, 212, 200, 201, 202, 12020, 12021, 12022, 12010, 12011, 12012, 12000, 12001, 12002, 12120, 12121, 12122, 12110, 12111, 12112, 12100, 12101, 12102, 12220, 12221, 12222
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jaime Rangel-Mondragon, Negabinary Numbers to Decimal
- Eric Weisstein's World of Mathematics, Negabinary
- Wikipedia, Negative base
Crossrefs
Programs
-
Haskell
a073785 0 = 0 a073785 n = a073785 n' * 10 + m where (n', m) = if r < 0 then (q + 1, r + 3) else (q, r) where (q, r) = quotRem n (negate 3) -- Reinhard Zumkeller, Jul 07 2012
-
Mathematica
ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 3], {n, 0, 45}]
-
PARI
A073785 = base(n, b=-3) = if(n, base(n\b, b)*10 + n%b, 0) \\ Jianing Song, Oct 20 2018
-
Python
def A073785(n): s, q = '', n while q >= 3 or q < 0: q, r = divmod(q, -3) if r < 0: q += 1 r += 3 s += str(r) return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016