A073804 Numbers k such that the number of divisors of k is greater than that of sigma(k).
4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 180, 192, 196, 200, 208, 225, 240, 252, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 700, 704, 720, 729, 768, 784, 800, 810, 832
Offset: 1
Keywords
Examples
k = 25: divisors(25) = {1,5,25}, 3 divisors; divisors(sigma(25)) = {1,31}, 2 divisors; 2 < 3, so 25 is a term. k = 48: divisors(48) = {1,2,3,4,6,8,12,16,24,48}, 10 divisors; divisors(sigma(48)) = {1,2,4,31,62,124}, 6 divisors, 6 < 10 so 48 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}] Select[Range[900],DivisorSigma[0,#]>DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jan 18 2017 *)
-
PARI
isok(k) = {my(f = factor(k)); numdiv(f) > numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025