cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073804 Numbers k such that the number of divisors of k is greater than that of sigma(k).

Original entry on oeis.org

4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 180, 192, 196, 200, 208, 225, 240, 252, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 700, 704, 720, 729, 768, 784, 800, 810, 832
Offset: 1

Views

Author

Labos Elemer, Aug 13 2002

Keywords

Examples

			k = 25: divisors(25) = {1,5,25}, 3 divisors; divisors(sigma(25)) = {1,31}, 2 divisors; 2 < 3, so 25 is a term.
k = 48: divisors(48) = {1,2,3,4,6,8,12,16,24,48}, 10 divisors; divisors(sigma(48)) = {1,2,4,31,62,124}, 6 divisors, 6 < 10 so 48 is a term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
    Select[Range[900],DivisorSigma[0,#]>DivisorSigma[0,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jan 18 2017 *)
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) > numdiv(sigma(f));} \\ Amiram Eldar, Mar 07 2025

Formula

Solutions to A000005(x) > A062068(x) = A000005(A000203(x)).