A073808 Number of common divisors of sigma_1(n) and sigma_2(n).
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 8, 3, 2, 2, 4, 2, 2, 6, 4, 2, 3, 2, 4, 3, 2, 3, 4, 2, 4, 3, 4, 2, 3, 2, 8, 4, 2, 2, 4, 4, 4, 3, 4, 2, 6, 3, 4, 6, 4, 2, 12, 2, 2, 4, 2, 3, 3, 2, 8, 3, 3, 2, 4, 2, 2, 4, 4, 3, 3, 2, 4, 3, 2, 2, 6, 3, 2, 6, 4, 2, 4, 3, 8, 3, 2, 3, 8, 2, 4, 4, 4, 2, 3, 2, 4
Offset: 1
Keywords
Examples
n=10: sigma[1,10]=18, sigma[1,10]=130 Intersection[{1,2,3,6,9,18},{1,2,5,10,13,26,65,130}]={1,2}, so a(10)=2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
g1[x_] := Divisors[DivisorSigma[1, x]] g2[x_] := Divisors[DivisorSigma[2, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}] (* Second program: *) Table[Length@ Apply[Intersection, Divisors@ Array[DivisorSigma[#, n] &, 2]], {n, 105}] (* Michael De Vlieger, Nov 23 2017 *)
-
PARI
A073808(n) = numdiv(gcd(sigma(n),sigma(n,2))); \\ Antti Karttunen, Nov 23 2017
Comments