cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073919 Smallest prime p with bigomega(p-1)=n, where bigomega(m)=A001222(m) is the number of prime divisors of m (counted with multiplicity).

Original entry on oeis.org

2, 3, 5, 13, 17, 73, 97, 193, 257, 769, 3457, 7681, 15361, 12289, 40961, 114689, 65537, 737281, 1376257, 786433, 5308417, 7340033, 14155777, 28311553, 104857601, 113246209, 167772161, 469762049, 2113929217, 1811939329
Offset: 0

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Examples

			a(2) = 5 = 2*2 + 1. a(5) = 73 = 2*2*2*3*3 + 1.
		

Crossrefs

Cf. A118883.

Programs

  • Mathematica
    ptns[n_, 0] := If[n==0, {{}}, {}]; ptns[n_, k_] := Module[{r}, If[nv, Return[v]]; minp=Min@@Select[l+1, ProvablePrimeQ]; If[minpHarvey P. Dale, Sep 28 2014 *)
  • PARI
    almost_primes(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, listput(list, m*q)), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = if(n==0, return(2)); my(x=2^n, y=2*x); while(1, my(v=almost_primes(x, y, n)); for(k=1, #v, if(isprime(v[k]+1), return(v[k]+1))); x=y+1; y=2*x); \\ Daniel Suteu, Jan 07 2025

Extensions

Edited by Dean Hickerson, Nov 12 2002