A073932 Define f(n) = n - largest nontrivial divisor of n or f(n) = n-1 if n is a prime [that is, f(n) = A060681(n)]. Form a triangle in which the n-th row contains terms n, f(n), f(f(n)), ... until a 1 is reached; sequence gives triangle read by rows.
1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 3, 2, 1, 7, 6, 3, 2, 1, 8, 4, 2, 1, 9, 6, 3, 2, 1, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 12, 6, 3, 2, 1, 13, 12, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 15, 10, 5, 4, 2, 1, 16, 8, 4, 2, 1, 17, 16, 8, 4, 2, 1, 18, 9, 6, 3, 2, 1, 19, 18, 9, 6, 3, 2, 1, 20, 10, 5, 4, 2, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 3, 2, 1; 4, 2, 1; 5, 4, 2, 1; 6, 3, 2, 1; 7, 6, 3, 2, 1; 8, 4, 2, 1; 9, 6, 3, 2, 1; 10, 5, 4, 2, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12386 (rows 1 <= n <= 1000, flattened)
- John Machacek, Egyptian Fractions and Prime Power Divisors, Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.7.
Programs
-
Maple
j := 1:a[1] := 1:for i from 2 to 50 do n := i:j := j+1:a[j] := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:j := j+1:a[j] := n: od:od:seq(a[k],k=1..j);
-
Mathematica
Array[If[# == 1, {1}, NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 20] // Flatten (* Michael De Vlieger, Apr 15 2020 *)
Extensions
More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017