A074037 Sum of the composites between the smallest prime factor of n and the largest prime factor of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 4, 0, 0, 0, 0, 4, 10, 37, 0, 0, 0, 49, 0, 10, 0, 4, 0, 0, 37, 94, 6, 0, 0, 112, 49, 4, 0, 10, 0, 37, 4, 175, 0, 0, 0, 4, 94, 49, 0, 0, 33, 10, 112, 305, 0, 4, 0, 335, 10, 0, 45, 37, 0, 94, 175, 10, 0, 0, 0, 505, 4, 112, 27, 49, 0, 4, 0, 622, 0, 10
Offset: 1
Examples
a(14) = 10 because 2*7 = 14 and 4 + 6 = 10.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Jason Earls, Some Smarandache-type sequences and problems concerning abundant and deficient numbers, in Smarandache Notions Journal (2004), Vol. 14.1, pp 265-270.
Programs
-
Maple
with(numtheory): a:=proc(n) local nf,nnf,s,j: nf:=factorset(n): nnf:=nops(nf): s:=0: for j from nf[1] to nf[nnf] do if isprime(j)=false then s:=s+j else s:=s: fi: od: s: end: 0,seq(a(n),n=2..84); # Emeric Deutsch
-
Mathematica
sc[n_]:=Module[{pfacs=Transpose[FactorInteger[n]][[1]],a,b}, a=Min[ pfacs]+1; b=Max[pfacs]-1;Total[Select[Range[a,b],!PrimeQ[#]&]]]; Array[sc,90] (* Harvey P. Dale, Nov 14 2011 *)
Comments