cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074075 Values of m corresponding to the minimization problem of A074074.

Original entry on oeis.org

1, 1, 2, 4, 2, 4, 3, 8, 8, 3, 7, 11, 8, 14, 6, 15, 15, 11, 19, 8, 13, 5, 14, 5, 25, 26, 20, 27, 26, 22, 19, 31, 26, 33, 35, 22, 29, 23, 7, 31, 25, 32, 37, 17, 43, 28, 47, 29, 49, 23, 31, 45, 32, 21, 49, 41, 47, 35, 43, 50, 37, 53, 38, 59, 62, 64, 26, 62, 58, 67, 43, 70, 44, 73, 74, 73, 20
Offset: 1

Views

Author

Lekraj Beedassy, Aug 28 2002

Keywords

Crossrefs

Cf. A074074.

Programs

  • Mathematica
    A074074[n_] := Module[{dd, sols, x, y}, dd = Table[(2n+1)^2 - 4 m^2, {m, 1, n}]; sols = Table[{d, x /. Solve[x > 0 && y > 0 && x^2 - d y^2 == 1, {x, y}, Integers]}, {d, dd}] /. C[1] -> 1 // Select[#, #[[2]] != {}&]&; MinimalBy[sols, #[[2, 1]]&][[1, 1]]];
    a[n_] := a[n] = Sqrt[(2n+1)^2 - A074074[n]]/2;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2024 *)

Formula

a(n) = sqrt( (2n+1)^2-A074074(n))/2 .

Extensions

Sequence extended beyond a(7) by R. J. Mathar, Sep 21 2009

A074076 One-sixth of the area of some primitive Heronian triangles with a distance of 2n+1 between the median and altitude points on the longest side.

Original entry on oeis.org

60, 4620, 2024, 5984, 11480, 22960, 41580, 8096, 45920, 521640, 226884, 392920, 438944, 803320, 6725544, 207900, 37966500, 1544620, 6846840, 2295200, 2785484, 9009000, 4016600, 188375200, 3383500, 149240, 5738000, 875124, 12013456, 8848840
Offset: 1

Views

Author

Lekraj Beedassy, Aug 28 2002

Keywords

Comments

With N=2n+1, such a triangle has sides N*u +/- M, 2*M*u (the latter being cut into M*u +/- N by the corresponding altitude) and inradius M*(N - M)*v. The first entry, in particular, is associated with sequence A023039.

Crossrefs

Programs

  • Maple
    A033313 := proc(Dcap) local c,i,fr,nu,de ; if issqr(Dcap) then -1; else c := numtheory[cfrac](sqrt(Dcap)) ; for i from 1 do try fr := numtheory[nthconver](c,i) ; nu := numer(fr) ; de := denom(fr) ; if nu^2-Dcap*de^2=1 then RETURN(nu) ; fi; catch: RETURN(-1) ; end try; od: fi: end:
    A074076 := proc(n) local Dmin,xmin,Dcap ; Dmin := -1; xmin := -1; mmin := -1; ymin := -1; for m from 1 to n do Dcap := (2*n+1+2*m)*(2*n+1-2*m) ; x := A033313(Dcap) ; if xmin = -1 or (x >0 and xA074076(n),n=1..80) ; # R. J. Mathar, Sep 21 2009

Formula

a(n) = M(n)*D(n)*u(n)*v(n)/6, where (u, v) is the fundamental solution to x^2 - D*y^2 = 1, with M = 2*A074075(n); D = A074074(n) = N^2 - M^2.

Extensions

Removed assertion that these are the minimum areas - R. J. Mathar, Sep 21 2009
Showing 1-2 of 2 results.