cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074082 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 16, 37, 81, 169, 342, 675, 1307, 2491, 4686, 8718, 16066, 29364, 53282, 96065, 172215, 307151, 545286, 963993, 1697701, 2979383, 5211852, 9090060, 15810530, 27429426, 47473828, 81983773, 141286221, 243011173
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^2 are 0,0,0,0,2,6.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A000045, A023610 and A074083. Related sequences with different values of b and lambda are in A074084-A074089.

Programs

  • Mathematica
    b=1; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0}, LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 6, 16, 37}, 32]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

G.f.: (2*x^4-2*x^6-x^7)/(1-x-x^2)^3.
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6) for n>=8.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A074086 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,1).

Original entry on oeis.org

0, 0, 0, 0, 0, 14, 71, 282, 997, 3298, 10439, 32012, 95834, 281494, 814131, 2324422, 6564135, 18362810, 50947395, 140329400, 384031508, 1044880222, 2828084399, 7618214354, 20432838121, 54585196818, 145287466799, 385397215108
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 is the Pell number A000129(n+1).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=5, nu(3)=12+2q, nu(4)=29+9q+5q^2, nu(5)=70+32q+24q^2+14q^3+2q^4, so the coefficients of q^3 are 0,0,0,0,0,14.
		

Crossrefs

Coefficients of q^0, q^1 and q^2 are in A000129, A074084 and A074085. Related sequences with other values of b and lambda are in A074082-A074083 and A074087-A074089.

Programs

  • Mathematica
    b=2; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0, 0}, LinearRecurrence[{8, -20, 8, 26, -8, -20, -8, -1}, {0, 0, 14, 71, 282, 997, 3298, 10439}, 25]] (* Jean-François Alcover, Jan 27 2019 *)

Formula

G.f.: (14x^5-41x^6-6x^7+49x^8+30x^9+5x^10)/(1-2x-x^2)^4.
a(n) = 8a(n-1)-20a(n-2)+8a(n-3)+26a(n-4)-8a(n-5)-20a(n-6)-8a(n-7)-a(n-8) for n>=11.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A074083 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 14, 39, 97, 224, 494, 1051, 2177, 4412, 8784, 17228, 33360, 63886, 121164, 227833, 425147, 787916, 1451198, 2657821, 4842727, 8782230, 15857426, 28517864, 51095760, 91232520, 162372682, 288115147, 509790277, 899630376
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^3 are 0,0,0,0,0,4.
		

Crossrefs

Coefficients of q^0, q^1 and q^2 are in A000045, A023610 and A074082. Related sequences with different values of b and lambda are in A074084-A074089.

Programs

  • Mathematica
    b=1; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0, 0}, LinearRecurrence[{4, -2, -8, 5, 8, -2, -4, -1}, {0, 0, 4, 14, 39, 97, 224, 494}, 31]] (* Jean-François Alcover, Jan 27 2019 *)

Formula

G.f.: (4x^5-2x^6-9x^7+x^8+6x^9+2x^10)/(1-x-x^2)^4.
a(n) = 4a(n-1)-2a(n-2)-8a(n-3)+5a(n-4)+8a(n-5)-2a(n-6)-4a(n-7)-a(n-8) for n>=11.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A074085 Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n - 2))*nu(n-2) with (b,lambda) = (2,1).

Original entry on oeis.org

0, 0, 0, 0, 5, 24, 91, 308, 978, 2978, 8802, 25440, 72251, 202316, 559941, 1534548, 4170256, 11250630, 30158900, 80389600, 213204513, 562896832, 1480086111, 3877337556, 10123000126, 26347306474, 68378847990, 176994780672
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 is the Pell number A000129(n+1).

Examples

			The first 6 nu polynomials are nu(0) = 1, nu(1) = 2, nu(2) = 5, nu(3) = 12 + 2*q, nu(4) = 29 + 9*q + 5*q^2, nu(5) = 70 + 32q + 24*q^2 + 14*q^3 + 2*q^4, so the coefficients of q^2 are 0,0,0,0,5,24.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A000129, A074084 and A074086. Related sequences with other values of b and lambda are in A074082-A074083 and A074087-A074089.

Programs

  • Mathematica
    b=2; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0,0}, LinearRecurrence[{6, -9, -4, 9, 6, 1}, {0, 0, 5, 24, 91, 308}, 30]] (* Jean-François Alcover, Dec 13 2018 *)

Formula

G.f.: (5*x^4 - 6*x^5 - 8*x^6 - 2*x^7)/(1 - 2*x - x^2)^3.
a(n) = 6*a(n-1) - 9*a(n-2) - 4*a(n-3) + 9*a(n-4) + 6*a(n-5) + a(n-6) for n >= 8.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A127532 Triangle read by rows: T(n,k) is the number of binary trees with n edges and jump-length equal to k (n >= 0, 0 <= k <= n-2).

Original entry on oeis.org

1, 2, 5, 12, 2, 29, 9, 4, 70, 32, 22, 8, 169, 102, 86, 56, 16, 408, 306, 296, 244, 144, 32, 985, 883, 949, 901, 712, 368, 64, 2378, 2480, 2908, 3056, 2822, 2096, 928, 128, 5741, 6828, 8633, 9830, 10074, 8976, 6144, 2304, 256, 13860, 18514, 25032, 30482, 33792
Offset: 0

Views

Author

Emeric Deutsch, Jan 18 2007

Keywords

Comments

In the preorder traversal of a binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given binary tree is called the jump-length.
Rows 0 and 1 have one term each; row n (n >= 2) has n-1 terms.
Row sums are the Catalan numbers (A000108).
T(n,0) = A000129(n+1) (the Pell numbers).
T(n,1) = A074084(n).
Sum_{k>=0} k*T(n,k) = binomial(2n+1, n-3) + binomial(2n, n-3) = A127533(n).
The distribution of the statistic "number of jumps" is given in A127530.
The average jump distance in all binary trees with n edges is 2n(3n+5)(2n-1)/((n+3)(n+4)(3n+1)) (i.e., about 4 levels when n is large). The Krandick reference considers jump-length for full binary trees.

Examples

			Triangle starts:
   1;
   2;
   5;
  12,  2;
  29,  9,  4;
  70, 32, 22,  8;
		

Crossrefs

Programs

  • Maple
    G:=(-1+2*t-2*t*z-sqrt(1-4*t*z+4*t^2*z^2-4*t*z^2))/2/(z^2-1+t-2*t*z+2*z): Gser:=simplify(series(G,z=0,17)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1;2;for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form

Formula

G.f.: G = G(t,z) is given by (1 - t - 2z + 2tz - z^2)*G^2 - (1 - 2t + 2tz)*G - t = 0.
Showing 1-5 of 5 results.