A127533 Sum of jump-lengths of all binary trees with n edges.
0, 0, 0, 2, 17, 100, 506, 2366, 10556, 45696, 193800, 810084, 3350479, 13748020, 56071470, 227613750, 920540040, 3711935040, 14932102320, 59951235420, 240316859250, 962056169256, 3847193657076, 15370712686252, 61364157982952
Offset: 0
Keywords
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Magma
[Binomial(2*n+1,n-3) + Binomial(2*n,n-3): n in [0..30]]; // Vincenzo Librandi, Dec 20 2015
-
Maple
seq(binomial(2*n+1,n-3)+binomial(2*n,n-3),n=0..28);
-
Mathematica
Table[Binomial[2 n + 1, n - 3] + Binomial[2 n, n - 3], {n, 0, 24}] (* Michael De Vlieger, Dec 19 2015 *)
Formula
G.f.: z^3*C^6*(C+1)/sqrt(1-4z), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
a(n) = binomial(2*n+1,n-3) + binomial(2*n,n-3).
a(n) = Sum_{k>=0} A127532(n,k).
a(n) ~ n -> 4^n*(3-275/(8*n)+29475/(128*n^2)-1268225/(1024*n^3)+195652737/ (32768*n^4))/sqrt(n*Pi). - Peter Luschny, Dec 19 2015
D-finite with recurrence -(n-3)*(3*n+2)*(n+4)*a(n) +2*n*(3*n+5)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
Comments