A127536 Sum of jump-lengths of all even trees with 2n edges.
0, 1, 10, 77, 546, 3740, 25194, 168245, 1118260, 7413705, 49085400, 324794316, 2148789800, 14217578856, 94096891658, 622997471685, 4126520887720, 27345271410275, 181295437422330, 1202538435463365, 7980245606038650
Offset: 1
Keywords
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
seq((n-1)*(2*n-1)*binomial(3*n,n)/3/(n+1)/(2*n+1),n=1..25);
-
Mathematica
Table[(n - 1) (2 n - 1) Binomial[3 n, n]/3/(n + 1)/(2*n + 1), {n, 30}] (* Wesley Ivan Hurt, Aug 04 2025 *)
Formula
a(n) = (n-1)(2n-1)C(3n,n)/[3(n+1)/(2n+1)].
a(n) = Sum_{k=0..n-1} k*A127535(n,k).
D-finite with recurrence 2*(n-2)*(2*n+1)*(2*n-3)*(n+1)*a(n) -3*(n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
Comments