A127535 Triangle read by rows: T(n,k) is the number of even trees with 2n edges and jump-length equal to k (0<=k<=n-1).
1, 2, 1, 4, 6, 2, 8, 22, 20, 5, 16, 66, 107, 70, 14, 32, 178, 428, 496, 252, 42, 64, 450, 1449, 2498, 2235, 924, 132, 128, 1090, 4410, 10234, 13662, 9878, 3432, 429, 256, 2562, 12479, 36558, 66107, 71370, 43043, 12870, 1430, 512, 5890, 33512, 118588
Offset: 1
Examples
Triangle starts: 1; 2,1; 4,6,2; 8,22,20,5; 16,66,107,70,14;
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
eq:=(2*t-1-t^2+2*z-t*z)*G^3-(2+2*t*z-2*t-5*z)*G^2+(4*z-t*z-1)*G+z: g:=RootOf(eq,G): gser:=simplify(series(g,z=0,14)): for n from 1 to 11 do P[n]:=sort(expand(coeff(gser,z,n))) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
Comments