cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074193 Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).

Original entry on oeis.org

6, -1, -3, -1, 17, -16, -15, 13, 81, -127, -58, 175, 329, -885, -31, 1424, 833, -5543, 2181, 9233, -2298, -31025, 27893, 49495, -54879, -150416, 245697, 204965, -526887, -570895, 1801670, 407711, -3882303, -946397, 11542929, -3442672, -24121039, 10317745, 64959629, -56727711, -127083514
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2002

Keywords

Comments

From Kai Wang, Oct 21 2020: (Start)
Let f(x) = x^4 - x^3 - x^2 - x - 1 be the characteristic polynomial for Tetranacci numbers (A000078). Let {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2)^n + (x1*x3)^n + (x1*x4)^n + (x2*x3)^n + (x2*x4)^n + (x3*x4)^n.
Let g(y) = y^6 + y^5 + 2*y^4 + 2*y^3 - 2*y^2 + y - 1 be the characteristic polynomial for a(n). Let {y1,y2,y3,y4,y5,y6} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n + y5^n + y6^n. (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
  • PARI
    polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1,44) \\ Joerg Arndt, Oct 22 2020

Formula

a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
abs(a(n)) = abs(A074453(n)). - Joerg Arndt, Oct 22 2020