cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A353059 Integers k such that the prime factorization of k uses digits from a proper subset of the digits of k.

Original entry on oeis.org

143, 187, 341, 351, 451, 671, 781, 1023, 1024, 1057, 1207, 1243, 1324, 1352, 1372, 1375, 1379, 1703, 1982, 2139, 2176, 2189, 2317, 2321, 2510, 2519, 2816, 3051, 3125, 3159, 3375, 3421, 3641, 3861, 4232, 5102, 5210, 6182, 6272, 7819, 8197, 8921, 9251, 9317, 9481, 9531
Offset: 1

Views

Author

Tanya Khovanova, Apr 20 2022

Keywords

Comments

All numbers in this sequence are composite.

Examples

			143 = 11^1 * 13^1: the number itself uses digits 1, 3, and 4, while the prime factorization uses the subset of digits: 1 and 3. Thus, 143 is in this sequence.
25 = 5^2. Both the number and the prime factorization use the same set of digits. Thus, 25 is not in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], SubsetQ[Union[IntegerDigits[#]], Union[Flatten[IntegerDigits[FactorInteger[#]]]]] && Length[Union[IntegerDigits[#]]] > Length[Union[Flatten[IntegerDigits[FactorInteger[#]]]]] &]
  • Python
    from sympy import factorint
    def ok(n): return set("".join(str(p)+str(e) for p, e in factorint(n).items())) < set(str(n))
    print([k for k in range(2, 9999) if ok(k)]) # Michael S. Branicky, Apr 20 2022
Showing 1-1 of 1 results.