A074243 Numbers n such that every integer has a cube root mod n.
1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 23, 29, 30, 33, 34, 41, 46, 47, 51, 53, 55, 58, 59, 66, 69, 71, 82, 83, 85, 87, 89, 94, 101, 102, 106, 107, 110, 113, 115, 118, 123, 131, 137, 138, 141, 142, 145, 149, 159, 165, 166, 167, 170, 173, 174, 177, 178, 179, 187, 191, 197
Offset: 1
Examples
The number 30 is in the sequence because the function x^3 (mod 30) describes a bijection from [0...29] to itself. Thus every integer has a cube root, modulo 30.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (terms 1..1501 from Zak Seidov).
- Olivier Garet, How often is x->x^3 one-to-one in Z/nZ?, arXiv:2504.13511 [math.NT], 2025.
- Dainis Zeps, On Grinbergs' differential geometry and finite fields, University of Latvia (2019).
Programs
-
Maple
N:= 1000: # to get all terms <= N Primes:= {2,3} union select(isprime, {seq(6*i+5,i=0..floor((N-5)/6))}): A:= {1}: for p in Primes do A:= A union map(`*`, select(`<=`, A, floor(N/p)),p) od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Apr 20 2015
-
Mathematica
fQ[n_] := Sort[PowerMod[#, 3, n] & /@ Range@ n] == Range@ n - 1; Select[Range@ 200, fQ] (* Michael De Vlieger, Apr 20 2015 *)
-
PARI
is(n)=my(f=factor(n)); if(n>1 && vecmax(f[,2])>1, return(0)); for(i=1,#f~, if(f[i,1]%3==1, return(0))); 1 \\ Charles R Greathouse IV, Apr 20 2015
Formula
a(n) ~ k*n*sqrt(log(n)) for some constant k. - Charles R Greathouse IV, Apr 20 2015
Extensions
New name from Charles R Greathouse IV, Apr 20 2015
Comments