cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139095 Fibonacci numbers whose sum of proper divisors is also a Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917, 475420437734698220747368027166749382927701417016557193662268716376935476241
Offset: 1

Views

Author

Omar E. Pol, May 11 2008

Keywords

Comments

Fibonacci numbers k such that A001065(k) is a Fibonacci number.
A001065(a(n)) is a Fibonacci number.
Certainly this contains 1 and the terms of A005478. Does it contain any other terms? - R. J. Mathar, Sep 17 2009
The next term, Fibonacci(359) = 4.754...*10^74, is too large to include in the data section. There are no composite Fibonacci numbers below A000045(1423) in this sequence. - Amiram Eldar, Mar 11 2024

Crossrefs

Programs

  • Maple
    isA000045 := proc(n) local i,f ; for i from 0 do f := combinat[fibonacci](i) ; if f = n then RETURN(true) ; elif f > n then RETURN(false) ; fi ; od; end: A001065 := proc(n) numtheory[sigma](n)-n ; end: isA139095 := proc(n) RETURN( isA000045(n) and isA000045(A001065(n)) ) ; end: for i from 1 to 230 do if isA139095(combinat[fibonacci](i)) then printf("%d,", combinat[fibonacci](i)) ; fi ; od: # R. J. Mathar, May 22 2008
  • Mathematica
    Fsum[n_]:=DivisorSigma[1,n]-n;Select[Fibonacci[Range[140]],IntegerQ[Sqrt[5*Fsum[#]^2 + 4]] || IntegerQ[Sqrt[5*Fsum[#]^2 - 4]]&] (* James C. McMahon, Jun 28 2025 *)

Extensions

More terms from R. J. Mathar, May 22 2008

A152774 Number of proper divisors of the Fibonacci number A000045(n).

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 3, 3, 3, 1, 14, 1, 3, 7, 7, 1, 15, 3, 15, 7, 3, 1, 71, 5, 3, 15, 15, 1, 63, 3, 15, 7, 3, 7, 159, 7, 7, 7, 63, 3, 63, 1, 31, 31, 7, 1, 335, 7, 47, 7, 15, 3, 127, 15, 95, 31, 7, 3, 959, 3, 7, 31, 63, 7, 63, 7, 31, 31, 127, 3, 1535, 3, 15, 47, 31, 15, 127, 3
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, Fibonacci[n]] - 1; Array[a, 100] (* Amiram Eldar, Apr 07 2024 *)
  • PARI
    a(n) = numdiv(fibonacci(n)) - 1; \\ Amiram Eldar, Apr 07 2024

Formula

a(n) = A000005(A000045(n))-1 = A032741(A000045(n)) = A063375(n)-1.
Showing 1-2 of 2 results.