A278245 Least number with the same prime signature as the n-th Fibonacci number: a(n) = A046523(A000045(n)).
1, 1, 2, 2, 2, 8, 2, 6, 6, 6, 2, 144, 2, 6, 30, 30, 2, 120, 6, 210, 30, 6, 2, 10080, 12, 6, 210, 210, 2, 9240, 6, 210, 30, 6, 30, 166320, 30, 30, 30, 30030, 6, 9240, 2, 2310, 2310, 30, 2, 2882880, 30, 4620, 30, 210, 6, 120120, 210, 60060, 2310, 30, 6, 232792560, 6, 30, 2310, 30030, 30, 9240, 30, 2310, 2310, 510510, 6, 1396755360, 6, 210, 4620, 2310, 210, 120120, 6
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, May 18 2017: (Start) a(6) = 8 because Fibonacci(6) = 8, the multiplicity of the prime factor of 8 is 3; the smallest p^3 = 2^3 = 8. a(7) = 2 because Fibonacci(7) = 13, the multiplicity of the prime factor of 13 is 1; the smallest p^1 = 2^1 = 2. a(15) = 30 because Fibonacci(15) = 610. The multiplicities of the prime factors of 610, in order from greatest to least, are {1, 1, 1}, the smallest prime power product p^1 * q^1 * r^1 = 2 * 3 * 5 = 30. a(18) = 120 because Fibonacci(18) = 2584 = 2^3 * 17 * 19 -> 2^3 * 3 * 5 = 120. (End)
Links
- Antti Karttunen (terms 1..374) & Hans Havermann, Table of n, a(n) for n = 1..1300
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Mathematica
Table[If[# == 1, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ Fibonacci@ n, {n, 79}] (* Michael De Vlieger, May 18 2017 *)
-
PARI
A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From Charles R Greathouse IV, Aug 17 2011 f0 = 0; f1 = 1; for(n=1, 10000, write("b278245.txt", n, " ", A046523(f1)); old_f0 = f0; f0 = f1; f1 = f1 + old_f0; );
-
Scheme
(define (A278245 n) (A046523 (A000045 n)))
Comments