A074293 Dominant (i.e., most populous) digit in Kolakoski sequence (A000002) when partitioned into groups of 5.
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0
Examples
The Kolakoski sequence begins (1,2,2,1,1), (2,1,2,2,1), (2,2,1,1,2), (1,1,2,2,1), hence sequence begins 1,2,2,1.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Programs
-
Maple
lim:=400: s:=[1,2,2]: for n from 3 to lim do for i from 1 to s[n] do s:=[op(s),1+((n-1)mod 2)]: od: od: lim2:=floor(nops(s)/5)-1: for n from 0 to lim2 do if(s[5*n+1]+s[5*n+2]+s[5*n+3]+s[5*n+4]+s[5*n+5]<=7)then printf("1, "): else printf("2, "): fi: od: # Nathaniel Johnston, May 01 2011