cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074292 Dominant digit in successive groups of 3 from the Kolakoski sequence (A000002).

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

This appears to be the same as a sequence studied by Claude Lenormand in a letter dated Nov 17 2003: break up the Kolakoski sequence (A000002) into runs of identical symbols and omit one symbol from each run.
The sequence studied by Claude Lenormand is A156257 and is not equal to this one: see A248805 = A156257 - A074292. Differences between the two sequences are at n = 47, 48, 56, 57, 128, 129, 137, 139, 147, 148, 176, 177,... - Jean-Christophe Hervé, Oct 11 2014
As in the Kolakoski sequence, runs in this sequence are of length 1 or 2, because a run XX implies the repetition of exactly the same 3-group in the Kolakoski sequence: -YXX-YXX- or -XXY-XXY- or -XYX-XYX-, and this is not possible 3 times. However, words of the form YXYXY appear in this sequence, but don't appear in the Kolakoski sequence. - Jean-Christophe Hervé, Oct 12 2014

Examples

			Kolakoski begins (1,2,2), (1,1,2), (1,2,2), (1,2,2), so this begins 2,1,2,2.
		

Crossrefs

Programs

Formula

a(n)=A000002(3n-2)+A000002(3n-1)+A000002(3n)-3. - Benoit Cloitre, Nov 15 2003

Extensions

More terms from Ray Chandler, Nov 16 2003
Offset corrected by Jean-Christophe Hervé, Oct 11 2014

A074202 Numbers k such that the number of 1's in the binary expansion of k divides 2^k-1.

Original entry on oeis.org

1, 2, 4, 8, 14, 16, 22, 26, 28, 32, 38, 42, 44, 50, 52, 56, 64, 70, 74, 76, 82, 84, 88, 98, 100, 104, 112, 124, 128, 134, 138, 140, 146, 148, 152, 162, 164, 168, 176, 188, 194, 196, 200, 208, 220, 224, 236, 244, 248, 256, 262, 266, 268, 274, 276, 280, 290, 292
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Odd terms (1, 351, 375, ...) are in A074203.

Crossrefs

Different from A128309.

Programs

  • Mathematica
    Select[Range[300], (d = DigitCount[#, 2, 1]) == 1 || PowerMod[2, #, d] == 1 &] (* Amiram Eldar, Jul 30 2020 *)
  • PARI
    isok(n) = !((2^n-1) % hammingweight(n)); \\ Michel Marcus, Nov 29 2013
    
  • Python
    from itertools import count, islice
    def A074202_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not ((1<A074202_list = list(islice(A074202_gen(),20)) # Chai Wah Wu, Mar 09 2023

Extensions

Edited by N. J. A. Sloane, May 10 2007

A074295 Dominant (i.e., most populous) digit in Kolakoski sequence (A000002) when partitioned into groups of 7.

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Examples

			Kolakoski : (1,2,2,1,1,2,1),(2,2,1,2,2,1,1),(2,1,1,2,2,1,2),... hence 1,2,2,...
		

Crossrefs

Programs

  • Maple
    lim:=400: s:=[1, 2, 2]: for n from 3 to lim do for i from 1 to s[n] do s:=[op(s), 1+((n-1)mod 2)]: od: od: lim2:=floor(nops(s)/7)-1: for n from 0 to lim2 do if(add(s[7*n+k],k=1..7)<=10)then printf("1, "): else printf("2, "): fi: od: # Nathaniel Johnston, May 01 2011
Showing 1-3 of 3 results.