A074323 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(1,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
1, 1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576
Offset: 0
Examples
nu(0)=1; nu(1)=1; nu(2)=3; nu(3)=5+2q; nu(4)=11+8q+6q^2; nu(5)=21+22q+20q^2+14q^3+4q^4; nu(6)=43+60q+70q^2+64q^3+54q^4+28q^5+12q^6; by listing the coefficients of the highest power in each nu(n), we get 1,1,3,2,6,4,12,...
Links
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Crossrefs
Cf. A001045.
Programs
-
Mathematica
Join[{1}, LinearRecurrence[{0, 2}, {1, 3}, 41]] (* Jean-François Alcover, Sep 22 2017 *)
Formula
For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*t(n-2).
G.f.: (1+x+x^2)/(1-2*x^2); a(n)=2^floor(n/2)+2^((n-2)/2)*(1+(-1)^n)/2-0^n/2. - Paul Barry, Mar 11 2007
a(2n+1) = 2^n = A000079(n), a(2n+2) = 3*A000079(n). Also a(2n)-a(2n+1) = A131577. a(2n+1)-a(2n)=2^n for n>0. - Paul Curtz, Apr 09 2008
Extensions
More terms from Paul Barry, Mar 11 2007
Comments