A074340 a(1) = 5; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
5, 9, 23, 37, 39, 47, 57, 97, 119, 187, 257, 271, 273, 281, 309, 367, 449, 529, 687, 759, 933, 1031, 1131, 1237, 1263, 1343, 1731, 1861, 2177, 2337, 2589, 2607, 2743, 3191, 3199, 3281, 3499, 3807, 3867, 4133, 6079, 6189, 6593, 7207, 7479, 7523, 8569, 8571
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..411
Crossrefs
Programs
-
Mathematica
a[1] = 5; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)
-
Python
from sympy import isprime def aupton(terms): alst, astr = [5], "5" while len(alst) < terms: an = alst[-1] + 2 while an%5 ==0 or not isprime(int(astr + str(an))): an += 2 alst, astr = alst + [an], astr + str(an) return alst print(aupton(48)) # Michael S. Branicky, May 09 2021
Extensions
More terms from Robert G. Wilson v, Aug 05 2005