A074346 a(1) = 10; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
10, 13, 23, 49, 111, 113, 171, 211, 293, 309, 333, 387, 463, 479, 513, 687, 933, 973, 993, 1329, 1433, 1449, 1551, 2071, 2271, 2423, 2587, 2621, 2659, 2757, 2771, 2911, 3081, 3243, 3279, 3671, 4243, 4247, 4371, 4453, 4511, 5229, 6097, 6177, 6293, 6571
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..439
Crossrefs
Programs
-
Mathematica
a[1] = 10; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 46}] (* Robert G. Wilson v, Aug 05 2005 *)
-
Python
from sympy import isprime def aupton(terms): alst, astr = [10], "10" while len(alst) < terms: k = alst[-1] + 1 + (alst[-1]%2) while not isprime(int(astr+str(k))): k += 2 alst.append(k) astr += str(k) return alst print(aupton(46)) # Michael S. Branicky, Oct 13 2021
Extensions
More terms from Robert G. Wilson v, Aug 05 2005