cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074355 Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 147, 402, 1134, 2991, 7917, 20367, 52167, 131748, 330876, 824187, 2042763, 5035473, 12361755, 30226614, 73664298, 178971879, 433649769, 1048133619, 2527706127, 6083434824, 14613750648, 35045236083, 83909261319
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006130.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^1 are 0,0,0,3,15,45.
		

Crossrefs

Coefficient of q^0, q^2 and q^3 are in A006130, A074356 and A074357. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074354, A074358-A074363.

Programs

  • Maple
    nu := proc(n,b,lambda) option remember ; if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end:
    A074355 := proc(n) local b,lambda,thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,1) ) ; end: # R. J. Mathar, Mar 20 2007
  • Mathematica
    nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[ n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
    a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 1];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from 1st Maple program *)

Formula

G.f.: (9x^4+3x^3)/(1-3x-3x^2)^2 (conjectured). - Ralf Stephan, May 09 2004

Extensions

More terms from R. J. Mathar, Mar 20 2007