cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074357 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 168, 639, 2415, 7872, 25542, 77727, 233547, 679410, 1949862, 5490132, 15276456, 41963844, 114153990, 307595853, 822263313, 2181777252, 5751280350, 15069310365, 39269077809, 101817186264, 262776963360
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006130.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^3 are 0,0,0,0,0,30.
		

Crossrefs

Coefficient of q^0, q^1 and q^2 are in A006130, A074355 and A074356. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074354, A074358-A074363.

Programs

  • Maple
    nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074357 := proc(n) RETURN( coeftayl(nu(1,3,n),q=0,3) ) ; end: for n from 0 to 30 do printf("%d,", A074357(n)) ; od ; # R. J. Mathar, Sep 20 2006
  • Mathematica
    Join[{0, 0, 0}, LinearRecurrence[{4, 6, -32, -19, 96, 54, -108, -81}, {0, 0, 30, 168, 639, 2415, 7872, 25542}, 24]] (* Jean-François Alcover, Sep 22 2017 *)

Formula

Conjecture: O.g.f.: 3*x^5*(3*x+1)*(36*x^4+24*x^3-29*x^2-14*x+10)/(3*x^2+x-1)^4. - R. J. Mathar, Jul 22 2009

Extensions

More terms from R. J. Mathar, Sep 20 2006

A074354 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,2).

Original entry on oeis.org

0, 0, 0, 0, 0, 14, 64, 218, 692, 1982, 5496, 14562, 37692, 95142, 236032, 576074, 1387780, 3304078, 7787656, 18190386, 42151116, 96972534, 221651472, 503650970, 1138286740, 2559944414, 5731095704, 12776843138, 28374100572
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A001045(n+1).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^1 are 0,0,0,0,0,14.
		

Crossrefs

Coefficients of q^0, q^1 and q^2 are in A001045, A074352 and A074353. Related sequences with other values of b and lambda are in A074082-A074089, A074355-A074363.

Formula

Conjectures from Colin Barker, Nov 18 2017: (Start)
G.f.: 2*x^5*(1 + 2*x)*(7 - 10*x - 13*x^2 + 12*x^3 + 12*x^4) / ((1 + x)^4*(1 - 2*x)^4).
a(n) = 4*a(n-1) + 2*a(n-2) - 20*a(n-3) - a(n-4) + 40*a(n-5) + 8*a(n-6) - 32*a(n-7) - 16*a(n-8) for n>10.
(End)

Extensions

More terms from Benoit Cloitre, Jan 16 2003
Corrected by T. D. Noe, Oct 25 2006

A074353 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,2).

Original entry on oeis.org

0, 0, 0, 0, 6, 20, 70, 196, 542, 1396, 3526, 8628, 20766, 49092, 114598, 264356, 603998, 1368148, 3076166, 6870740, 15256158, 33696804, 74073510, 162127940, 353460766, 767816500, 1662394310, 3588252916, 7723318942, 16580031876, 35506388646, 75864499428
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A001045(n+1).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^2 are 0,0,0,0,6,20.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A001045, A074352 and A074354. Related sequences with other values of b and lambda are in A074082-A074089, A074355-A074363.

Programs

  • Mathematica
    LinearRecurrence[{3, 3, -11, -6, 12, 8}, {0, 0, 0, 0, 6, 20, 70, 196}, 50] (* Paolo Xausa, Jan 28 2025 *)
  • PARI
    concat(vector(4), Vec(2*x^4*(3 + x - 4*x^2 - 4*x^3) / ((1 + x)^3*(1 - 2*x)^3) + O(x^40))) \\ Colin Barker, Nov 18 2017

Formula

a(0)=0 for n>0, a(n) = (1/81)*(2^(n-1)*(6*n^2-43) + (-1)^n*(6*n^2-24*n+62)). - Benoit Cloitre, Jan 16 2003
From Colin Barker, Nov 18 2017: (Start)
G.f.: 2*x^4*(3 + x - 4*x^2 - 4*x^3) / ((1 + x)^3*(1 - 2*x)^3).
a(n) = 3*a(n-1) + 3*a(n-2) - 11*a(n-3) - 6*a(n-4) + 12*a(n-5) + 8*a(n-6) for n>7.
(End)

Extensions

More terms from Benoit Cloitre, Jan 16 2003
Corrected by T. D. Noe, Oct 25 2006

A074356 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).

Original entry on oeis.org

0, 0, 0, 0, 12, 42, 180, 561, 1833, 5373, 15798, 44367, 123561, 336243, 906054, 2408094, 6344832, 16561824, 42922602, 110472933, 282678423, 719404803, 1822117962, 4594816221, 11540742615, 28880919975, 72033463644, 179107709004
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006130.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^2 are 0,0,0,0,12,42.
		

Crossrefs

Coefficient of q^0, q^1 and q^3 are in A006130, A074355 and A074357. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074354, A074358-A074363.

Programs

  • Maple
    nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074356 := proc(n) local b,lambda,thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074356(n) ) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
    a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 2];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from Maple *)

Formula

Conjectures from Colin Barker, Nov 18 2017: (Start)
G.f.: 3*x^4*(2 - 3*x)*(2 + 4*x + 3*x^2) / (1 - x - 3*x^2)^3.
a(n) = 3*a(n-1) + 6*a(n-2) - 17*a(n-3) - 18*a(n-4) + 27*a(n-5) + 27*a(n-6) for n>7.
(End)

Extensions

More terms from R. J. Mathar, Mar 20 2007
Showing 1-4 of 4 results.