cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074363 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(3,1).

Original entry on oeis.org

0, 0, 0, 0, 0, 36, 246, 1293, 6057, 26592, 111934, 457353, 1827529, 7176636, 27789976, 106371588, 403204880, 1515647250, 5656172420, 20974163475, 77339044883, 283743384228, 1036296662574, 3769287797151, 13658724680991, 49325767966842, 177570110818794
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006190(n+1).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,0,0,36.
		

Crossrefs

Coefficients of q^0, q^1 and q^2 are in A006190, A074361 and A074362. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074360.

Programs

  • PARI
    concat(vector(4), Vec(x^4*(3 + x)*(12 - 66*x + 69*x^2 + 60*x^3 + 10*x^4) / (1 - 3*x - x^2)^4 + O(x^40))) \\ Colin Barker, Nov 18 2017

Formula

From Colin Barker, Nov 18 2017: (Start)
G.f.: x^4*(3 + x)*(12 - 66*x + 69*x^2 + 60*x^3 + 10*x^4) / (1 - 3*x - x^2)^4.
a(n) = 12*a(n-1) - 50*a(n-2) + 72*a(n-3) + 21*a(n-4) - 72*a(n-5) - 50*a(n-6) - 12*a(n-7) - a(n-8) for n>9.
(End)

Extensions

More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
Missing a(0)=0 inserted by Sean A. Irvine, Jan 20 2025
Missing a(0)=0 inserted in b-file by David Radcliffe, Aug 01 2025