A074379 Carmichael numbers with exactly 4 prime factors.
41041, 62745, 63973, 75361, 101101, 126217, 172081, 188461, 278545, 340561, 449065, 552721, 656601, 658801, 670033, 748657, 838201, 852841, 997633, 1033669, 1082809, 1569457, 1773289, 2100901, 2113921, 2433601, 2455921
Offset: 1
Keywords
Examples
41041 = 7 * 11 * 13 * 41. 62745 = 3 * 5 * 47 * 89.
Links
- R. J. Mathar and Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..6042 from R. J. Mathar)
- Richard J. McIntosh Carmichael numbers with (p + 1) | (n - 1), Integers 14 (2014) #A59.
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867, May 04 2013
Crossrefs
Programs
-
Mathematica
p = Table[ Prime[i], {i, 1, 10}]; f[n_] := Union[ PowerMod[ Select[p, GCD[ #, n] == 1 & ], n - 1, n]]; Select[ Range[2500000], !PrimeQ[ # ] && OddQ[ # ] && Length[ FactorInteger[ # ]] == 4 && MoebiusMu[ # ] == 1 && f[ # ] == {1} & ]
-
PARI
is_A074379(n)=is_A002997(n) && is_A046386(n) \\ M. F. Hasler, Mar 24 2022
-
PARI
list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), if(q%p==1, next); forprime(r=q+2,sqrtint(lim\p\q), if(r%p==1 || r%q==1, next); my(m=lcm([p-1,q-1,r-1]),pqr=p*q*r,t=Mod(1,m)/pqr,L=lim\pqr); fordiv(pqr-1,d, my(s=d+1); if(s>L, break); if(s==t && s>r && isprime(s), listput(v,pqr*s)))))); Set(v) \\ Charles R Greathouse IV, Apr 23 2022
Formula
Intersection of A002997 (Carmichael numbers) and A046386 (product of four distinct primes). - M. F. Hasler, Mar 24 2022
Extensions
Edited and extended by Robert G. Wilson v, Oct 03 2002
Edited by M. F. Hasler, Mar 24 2022
Comments