cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074379 Carmichael numbers with exactly 4 prime factors.

Original entry on oeis.org

41041, 62745, 63973, 75361, 101101, 126217, 172081, 188461, 278545, 340561, 449065, 552721, 656601, 658801, 670033, 748657, 838201, 852841, 997633, 1033669, 1082809, 1569457, 1773289, 2100901, 2113921, 2433601, 2455921
Offset: 1

Views

Author

Jani Melik, Sep 24 2002

Keywords

Comments

Original name was: "Super-Carmichael numbers with exactly 4 factors", and a comment explained that the prefix "super" means that the Moebius function (A008683) equals mu(N) = +1 for these. But for squarefree numbers such as Carmichael numbers (A002997), this just means that they have an even number of prime factors, which is trivial if that number is 4.
In the literature there are other definitions of "super-Carmichael numbers", see the McIntosh and Meštrović references, so we prefer not to use this terminology at all.

Examples

			41041 = 7 * 11 * 13 * 41.
62745 = 3 * 5 * 47 * 89.
		

Crossrefs

Cf. A002997 (Carmichael numbers), A006931 (least Carmichael with n prime factors), A046386 (products of four distinct primes).

Programs

  • Mathematica
    p = Table[ Prime[i], {i, 1, 10}]; f[n_] := Union[ PowerMod[ Select[p, GCD[ #, n] == 1 & ], n - 1, n]]; Select[ Range[2500000], !PrimeQ[ # ] && OddQ[ # ] && Length[ FactorInteger[ # ]] == 4 && MoebiusMu[ # ] == 1 && f[ # ] == {1} & ]
  • PARI
    is_A074379(n)=is_A002997(n) && is_A046386(n) \\ M. F. Hasler, Mar 24 2022
    
  • PARI
    list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), if(q%p==1, next); forprime(r=q+2,sqrtint(lim\p\q), if(r%p==1 || r%q==1, next); my(m=lcm([p-1,q-1,r-1]),pqr=p*q*r,t=Mod(1,m)/pqr,L=lim\pqr); fordiv(pqr-1,d, my(s=d+1); if(s>L, break); if(s==t && s>r && isprime(s), listput(v,pqr*s)))))); Set(v) \\ Charles R Greathouse IV, Apr 23 2022

Formula

Intersection of A002997 (Carmichael numbers) and A046386 (product of four distinct primes). - M. F. Hasler, Mar 24 2022

Extensions

Edited and extended by Robert G. Wilson v, Oct 03 2002
Edited by M. F. Hasler, Mar 24 2022