A074193 Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).
6, -1, -3, -1, 17, -16, -15, 13, 81, -127, -58, 175, 329, -885, -31, 1424, 833, -5543, 2181, 9233, -2298, -31025, 27893, 49495, -54879, -150416, 245697, 204965, -526887, -570895, 1801670, 407711, -3882303, -946397, 11542929, -3442672, -24121039, 10317745, 64959629, -56727711, -127083514
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..5052
- Kai Wang, Identities, generating functions and Binet formula for generalized k-nacci sequences, 2020.
- Index entries for linear recurrences with constant coefficients, signature (-1,-2,-2,2,-1,1).
Programs
-
Mathematica
CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
-
PARI
polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1,44) \\ Joerg Arndt, Oct 22 2020
Formula
a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
abs(a(n)) = abs(A074453(n)). - Joerg Arndt, Oct 22 2020
Comments