A074467 Least k such that Sum_{i=1..k} 1/phi(i) >= n.
1, 2, 4, 8, 13, 22, 38, 63, 105, 177, 296, 495, 828, 1386, 2318, 3879, 6489, 10854, 18158, 30375, 50811, 84998, 142187, 237853, 397885, 665589, 1113411, 1862534, 3115683, 5211973, 8718687, 14584783, 24397699, 40812930, 68272636, 114207749, 191048868, 319590137
Offset: 1
Keywords
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 177, p. 55, Ellipses, Paris 2008.
- E. Landau, Uber die Zahlentheoretische Function ϕ(n) und ihre Beziehung zum Goldbachschen satz, Nachrichten der Koniglichten Gesel lschaft der Wissenschaften zu Göttingen mathematisch Physikalische klasse, Jahrgang (1900), pp. 177-186.
Links
- H. L. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17:1 (1970), pp. 33-39. [alternate link]
Programs
-
Mathematica
{s=0, s1=0}; Do[s=s+(1/EulerPhi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
-
PARI
a(n)=my(s,k);while(s
Charles R Greathouse IV, Jan 29 2013
Formula
a(n) ~ k exp(cn) for c = zeta(6)/zeta(2)/zeta(3) = A068468 and k = exp(-gamma + A085609) = 1.0316567993311528...; see Montgomery or Koninck. - Charles R Greathouse IV, Jan 29 2013
Extensions
More terms from Ryan Propper, Jul 09 2005
a(32)-a(38) from Donovan Johnson, Aug 21 2011