cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074468 Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.

Original entry on oeis.org

1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Formula

Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024

Extensions

2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024

A146323 a(n) = floor(Sum_{i=1..n} (1/phi(i))).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 30 2008

Keywords

Comments

Looking on the number of 1's, 2's, ..., k's in this sequence we obtain the sequence (1,2,4,5,9,16,25,42,72,...). Limit_{k->oo} (number of (k+1)'s / number of(k's)) = sqrt(e).
The limit above is wrong. The correct limit is exp(zeta(6)/(zeta(2)*zeta(3))) = exp(1/A082695) = 1.672818789624... . - Amiram Eldar, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    IntegerPart[Accumulate[1/EulerPhi[Range[110]]]] (* Harvey P. Dale, Dec 19 2015 *)
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += 1/eulerphi(k); print1(floor(s), ", "));} \\ Amiram Eldar, Jul 04 2025

Formula

a(n) = floor(A028415(n)/A048049(n)). - Amiram Eldar, Jul 04 2025
Showing 1-2 of 2 results.