cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A074585 a(n)= Sum_{j=0..floor(n/2)} A073145(2*j + q), where q = 2*(n/2 - floor(n/2)).

Original entry on oeis.org

3, -1, 2, 4, -3, 3, 8, -12, 11, 11, -30, 32, 13, -73, 96, -8, -157, 263, -110, -308, 685, -485, -504, 1676, -1653, -525, 3858, -4984, 605, 8239, -13824, 6192, 15875, -35889, 26210, 25556, -87651, 88307, 24904, -200860, 264267, -38501, -426622
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 28 2002

Keywords

Comments

a(n) is the convolution of A073145(n) with the sequence (1,0,1,0,1,0, ...).
a(n) is also the sum of the reflected (see A074058) sequence of the generalized tribonacci sequence (A001644).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (3+2*x+x^2)/(1+x-2*x^3-x^4+x^5) )); // G. C. Greubel, Apr 13 2019
    
  • Mathematica
    CoefficientList[ Series[(3+2*x+x^2)/(1+x-2*x^3-x^4+x^5), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^50)); Vec((3+2*x+x^2)/(1+x-2*x^3-x^4+x^5)) \\ G. C. Greubel, Apr 13 2019
    
  • Sage
    ((3+2*x+x^2)/(1+x-2*x^3-x^4+x^5)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Apr 13 2019

Formula

a(n) = -a(n-1) + 2*a(n-3) + a(n-4) - a(n-5), a(0) = 3, a(1) = -1, a(2) = 2, a(3) = 4, a(4) = -3.
G.f.: (3 + 2*x + x^2)/(1 + x - 2*x^3 - x^4 + x^5).

Extensions

More terms from Robert G. Wilson v, Aug 29 2002
Showing 1-1 of 1 results.