cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074586 Triangle of Moebius polynomial coefficients, read by rows, the n-th row forming the polynomial M(n,x) such that M(n,-1) = mu(n), the Moebius function of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 7, 8, 2, 1, 9, 15, 10, 2, 1, 13, 30, 27, 12, 2, 1, 15, 43, 57, 39, 14, 2, 1, 19, 67, 108, 98, 53, 16, 2, 1, 22, 90, 177, 206, 151, 69, 18, 2, 1, 26, 123, 282, 393, 359, 220, 87, 20, 2, 1, 28, 149, 405, 675, 752, 579, 307, 107, 22, 2, 1, 34, 203, 594, 1109
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2002

Keywords

Examples

			The first few Moebius polynomials are as follows:
M(1,x) = 1;
M(2,x) = 1 + 2*x;
M(3,x) = 1 + 4*x + 2*x^2;
M(4,x) = 1 + 7*x + 8*x^2 + 2*x^3;
M(5,x) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4;
M(6,x) = 1 + 13*x + 30*x^2 + 27*x^3 + 12*x^4 + 2*x^5;
M(7,x) = 1 + 15*x + 43*x^2 + 57*x^3 + 39*x^4 + 14*x^5 + 2*x^6; ...
ILLUSTRATION OF GENERATING METHOD:
M(1,x) = 1;
M(2,x) = 1 + 2*x*M(1,x) = 1 + 2*x;
M(3,x) = 1 + 3*x*M(1,x) + [3/2]*x*M(2,x) = 1 + 3*x + x*(1+2*x) = 1 + 4*x + 2*x^2;
M(4,x) = 1 + 4*x*M(1,x) + [4/2]*x*M(2,x) + [4/3]*x*M(3,x) = 1 + 4*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) = 1 + 7*x + 8*x^2 + 2*x^3;
M(5,x) = 1 + 5*x*M(1,x) + [5/2]*x*M(2,x) + [5/3]*x*M(3,x) + [5/4]*x*M(4,x) = 1 + 5*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) + 1*x*(1 + 7*x + 8*x^2 + 2*x^3) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4; ...
This triangle of coefficients begins:
  1
  1  2
  1  4   2
  1  7   8   2
  1  9  15  10    2
  1 13  30  27   12    2
  1 15  43  57   39   14    2
  1 19  67 108   98   53   16   2
  1 22  90 177  206  151   69  18   2
  1 26 123 282  393  359  220  87  20   2
  1 28 149 405  675  752  579 307 107  22  2
  1 34 203 594 1109 1439 1333 886 414 129 24 2 ...
		

Crossrefs

Cf. A074587.

Programs

  • Mathematica
    t[n_, 1] = 1; t[n_, k_] := t[n, k] = Sum[ Floor[n/m]*t[m, k-1], {m, 1, n-1}]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2012, after PARI *)
  • PARI
    {T(n,k)=if(k==1,1,sum(m=1,n-1,floor(n/m)*T(m,k-1)))}
    for(n=1,12, for(k=1,n, print1(T(n,k),", "));print(""))

Formula

The n-th row consists of the coefficients of M(n, x) as a polynomial in x, where M(n, x) = 1 + [n/1]*x*M(1, x) + [n/2]*x*M(2, x) + [n/3]*x*M(3, x) +... + [n/(n-1)]*x*M(n-1, x) for n>1, with M(1, x) = 1, where [x] = floor(x).
T(n, k) = Sum_{m=1..n-1} [n/m]*T(m, k-1) for n>=k>1, with T(n, 1)=1 for n>=1.