A074586 Triangle of Moebius polynomial coefficients, read by rows, the n-th row forming the polynomial M(n,x) such that M(n,-1) = mu(n), the Moebius function of n.
1, 1, 2, 1, 4, 2, 1, 7, 8, 2, 1, 9, 15, 10, 2, 1, 13, 30, 27, 12, 2, 1, 15, 43, 57, 39, 14, 2, 1, 19, 67, 108, 98, 53, 16, 2, 1, 22, 90, 177, 206, 151, 69, 18, 2, 1, 26, 123, 282, 393, 359, 220, 87, 20, 2, 1, 28, 149, 405, 675, 752, 579, 307, 107, 22, 2, 1, 34, 203, 594, 1109
Offset: 1
Examples
The first few Moebius polynomials are as follows: M(1,x) = 1; M(2,x) = 1 + 2*x; M(3,x) = 1 + 4*x + 2*x^2; M(4,x) = 1 + 7*x + 8*x^2 + 2*x^3; M(5,x) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4; M(6,x) = 1 + 13*x + 30*x^2 + 27*x^3 + 12*x^4 + 2*x^5; M(7,x) = 1 + 15*x + 43*x^2 + 57*x^3 + 39*x^4 + 14*x^5 + 2*x^6; ... ILLUSTRATION OF GENERATING METHOD: M(1,x) = 1; M(2,x) = 1 + 2*x*M(1,x) = 1 + 2*x; M(3,x) = 1 + 3*x*M(1,x) + [3/2]*x*M(2,x) = 1 + 3*x + x*(1+2*x) = 1 + 4*x + 2*x^2; M(4,x) = 1 + 4*x*M(1,x) + [4/2]*x*M(2,x) + [4/3]*x*M(3,x) = 1 + 4*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) = 1 + 7*x + 8*x^2 + 2*x^3; M(5,x) = 1 + 5*x*M(1,x) + [5/2]*x*M(2,x) + [5/3]*x*M(3,x) + [5/4]*x*M(4,x) = 1 + 5*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) + 1*x*(1 + 7*x + 8*x^2 + 2*x^3) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4; ... This triangle of coefficients begins: 1 1 2 1 4 2 1 7 8 2 1 9 15 10 2 1 13 30 27 12 2 1 15 43 57 39 14 2 1 19 67 108 98 53 16 2 1 22 90 177 206 151 69 18 2 1 26 123 282 393 359 220 87 20 2 1 28 149 405 675 752 579 307 107 22 2 1 34 203 594 1109 1439 1333 886 414 129 24 2 ...
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
Crossrefs
Cf. A074587.
Programs
-
Mathematica
t[n_, 1] = 1; t[n_, k_] := t[n, k] = Sum[ Floor[n/m]*t[m, k-1], {m, 1, n-1}]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2012, after PARI *)
-
PARI
{T(n,k)=if(k==1,1,sum(m=1,n-1,floor(n/m)*T(m,k-1)))} for(n=1,12, for(k=1,n, print1(T(n,k),", "));print(""))
Formula
The n-th row consists of the coefficients of M(n, x) as a polynomial in x, where M(n, x) = 1 + [n/1]*x*M(1, x) + [n/2]*x*M(2, x) + [n/3]*x*M(3, x) +... + [n/(n-1)]*x*M(n-1, x) for n>1, with M(1, x) = 1, where [x] = floor(x).
T(n, k) = Sum_{m=1..n-1} [n/m]*T(m, k-1) for n>=k>1, with T(n, 1)=1 for n>=1.