A074632 Numbers k such that the sum of 2nd, 3rd, 4th and 5th powers of divisors of k are divisible by sum of divisors of k.
1, 20, 64, 500, 729, 1024, 1280, 4096, 4352, 14580, 15625, 32000, 39168, 46656, 47360, 59049, 65536, 117649, 144640, 161024, 262144, 312500, 364500, 509184, 531441, 746496, 796797, 933120, 1000000, 1180980, 1184000, 1449216, 1771561
Offset: 1
Keywords
Examples
For k = 20: sigma(k) = 42 ,sigma_2(k) = 546 = 13 * 42, sigma_3(k) = 9198 = 219 * 42, sigma_4(k) = 170898 = 4069 * 42, sigma_5(k) = 3304182 = 78671 * 42.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..269 (terms up to 10^10)
Crossrefs
Programs
-
Mathematica
Select[Range[2000000],And@@Divisible[DivisorSigma[Range[2,5],#], DivisorSigma[ 1,#]]&] (* Harvey P. Dale, Jan 01 2012 *)
-
PARI
is(k) = {my(f = factor(k), s = sigma(f)); for(k = 2, 5, if(sigma(f, k) % s, return(0))); 1; } \\ Amiram Eldar, Jun 15 2024