cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074678 a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2.

Original entry on oeis.org

3, 1, 0, 6, 11, 15, 28, 56, 103, 185, 340, 630, 1159, 2127, 3912, 7200, 13243, 24353, 44792, 82390, 151539, 278719, 512644, 942904, 1734271, 3189817, 5866988, 10791078, 19847887, 36505951, 67144912, 123498752, 227149619, 417793281
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2002

Keywords

Comments

a(n) is the convolution of S(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.

Crossrefs

Programs

  • GAP
    a:=[3,1,0,6,11];; for n in [6..40] do a[n]:=a[n-1]+2*a[n-3]+a[n-4] +a[n-5]; od; a; # G. C. Greubel, Apr 02 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3-2*x-x^2)/(1-x-2*x^3-x^4-x^5) )); // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    CoefficientList[Series[(3-2*x-x^2)/(1-x-2*x^3-x^4-x^5), {x, 0, 40}], x]
    LinearRecurrence[{1,0,2,1,1}, {3,1,0,6,11}, 40] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)) \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    ((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2.
a(n) = a(n-1) + 2*a(n-3) + a(n-4) + a(n-5), a(0)=3, a(1)=1, a(2)=0, a(3)=6, a(4)=11.
G.f.: (3 - 2*x - x^2)/(1 - x - 2*x^3 - x^4 - x^5).