cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A130371 Signature permutation of a Catalan automorphism: apply *A074685 to the last subtree, if the root degree (A057515(n)) is odd.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 19, 22, 18, 17, 23, 24, 25, 27, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 55, 54, 47, 57, 58, 59, 51, 52, 53, 61, 62, 56, 63, 48, 49, 60, 64, 50, 46, 45, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Crossrefs

Inverse: A130372. a(n) = A130370(A074685(n)) = A074686(A130375(A074685(n))) = A130370(A130375(A130369(n))).

A130375 Signature permutation of a Catalan automorphism: apply *A074685 after the first nil on the top-level of list, if any present, otherwise leave the structure intact.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 11, 12, 13, 10, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 29, 28, 30, 31, 32, 33, 34, 35, 25, 26, 36, 27, 24, 23, 38, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 81, 82, 83, 80, 79, 85, 84
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Crossrefs

Inverse: A130376. a(n) = A074685(A130370(n)) = A074685(A130371(A074686(n))) = A130369(A130371(A130370(n))).

A122203 Signature permutations of SPINE-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "SPINE". In this recursion scheme the given automorphism is first applied at the root of binary tree, before the algorithm recurses down to the new right-hand side branch. The associated Scheme-procedures SPINE and !SPINE can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122204.
The recursion scheme SPINE has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069767, 2: A057509, 3: A130341, 4: A130343, 5: A130345, 6: A130347, 7: A122282, 8: A082339, 9: A130349, 10: A130351, 11: A130353, 12: A074685, 13: A130355, 14: A130357, 15: A130359, 16: A130361, 17: A057501, 18: A130363, 19: A130365, 20: A130367, 21: A069770. Other rows: row 251: A089863, row 253: A123717, row 3608: A129608, row 3613: A072796, row 65352: A074680, row 79361: A123715.

Programs

  • Scheme
    (define (SPINE foo) (letrec ((bar (lambda (s) (let ((t (foo s))) (if (pair? t) (cons (car t) (bar (cdr t))) t))))) bar))
    (define (!SPINE foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! s) (bar! (cdr s)))) s))) bar!))

A074679 Signature permutation of a Catalan automorphism: Rotate binary tree left if possible, otherwise swap its sides.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 9, 10, 22, 11, 12, 13, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 23, 24, 59, 25, 26, 27, 60, 61, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C.......A...B
....\./.........\./
.A...x....-->....x...C.................A..().........()..A..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> ((a . b) . c) ____ (a . ()) --> (() . a)
That is, we rotate the binary tree left, in case it is possible and otherwise (if the right hand side of a tree is a terminal node) swap the left and right subtree (so that the terminal node ends to the left hand side), i.e., apply the automorphism *A069770. Look at the example in A069770 to see how this will produce the given sequence of integers.
This is the first multiclause nonrecursive automorphism in table A089840 and the first one whose order is not finite, i.e., the maximum size of cycles in this permutation is not bounded (see A089842). The cycle counts in range [A014137(n-1)..A014138(n)] of this permutation is given by A001683(n+1), which is otherwise the same sequence as for Catalan automorphisms *A057161/*A057162, but shifted once right. For an explanation, please see the notes in OEIS Wiki.

Crossrefs

This automorphism has several variants, where the first clause is same (rotate binary tree to the left, if possible), but something else is done (than just swapping sides), in case the right hand side is empty: A082335, A082349, A123499, A123695. The following automorphisms can be derived recursively from this one: A057502, A074681, A074683, A074685, A074687, A074690, A089865, A120706, A122321, A122332. See also somewhat similar ones: A069773, A071660, A071656, A071658, A072091, A072095, A072093.
Inverse: A074680.
Row 12 of A089840.
Occurs also in A073200 as row 557243 because a(n) = A073283(A073280(A072796(n))). a(n) = A083927(A123498(A057123(n))).
Number of cycles: LEFT(A001683). Number of fixed points: LEFT(A019590). Max. cycle size & LCM of all cycle sizes: A089410 (in range [A014137(n-1)..A014138(n)] of this permutation).

Extensions

Description clarified Oct 10 2006

A122286 Signature permutations of SPINE-transformations of Catalan automorphisms in table A122204.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122204 with the recursion scheme "SPINE", or equivalently row n is obtained as SPINE(ENIPS(n-th row of A089840)). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A122285. This table contains also all the rows of A122203 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082347, 2: A057508, 3: A131142, 4: A131148, 5: A131146, 6: A131144, 7: A131173, 8: A131170, 9: A131154, 10: A131152, 11: A131150, 12: A057504, 13: A131164, 14: A131166, 15: A069767, 16: A131168, 17: A131172, 18: A131156, 19: A131158, 20: A131162, 21: A131160. Other rows: row 169: A130359, 3608: A130339, 3617: A057509, 65167: A074685.
See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122285-A122288, A122289-A122290, A130400-A130403. As a sequence differs from A122285 for the first time at n=92, where a(n)=17, while A122285(n)=18.

A074686 Permutation of natural numbers induced by the Catalan bijection gmA074686! acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 4, 5, 6, 22, 21, 17, 18, 20, 10, 9, 11, 12, 13, 14, 15, 16, 19, 64, 63, 58, 59, 62, 46, 45, 48, 49, 50, 54, 55, 57, 61, 27, 26, 23, 24, 25, 29, 28, 30, 31, 32, 33, 34, 35, 36, 38, 37, 39, 40, 41, 42, 43, 44, 47, 51, 52, 53, 56, 60, 196, 195, 189, 190, 194
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Crossrefs

Inverse of A074685. a(n) = A057163(A074690(A057163(n))). Occurs in A073200.

A074681 Permutation of natural numbers induced by the Catalan bijection gmA074681! acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 5, 4, 15, 14, 19, 20, 22, 16, 21, 18, 11, 13, 17, 12, 10, 9, 39, 41, 40, 38, 37, 52, 51, 53, 55, 54, 60, 61, 62, 64, 43, 42, 56, 57, 63, 47, 59, 48, 29, 28, 50, 33, 34, 36, 44, 58, 49, 30, 35, 46, 32, 25, 27, 45, 31, 26, 24, 23, 113, 112, 117, 118, 120
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Crossrefs

Inverse of A074682. a(n) = A057163(A074684(A057163(n))). Cf. A074685, A074687, A074689. Occurs in A073200 as row 5572432.

A130369 Signature permutation of a Catalan automorphism: apply *A074679 to the root and recurse down the cdr-spine (the right-hand side edge of a binary tree) as long as the binary tree rotation is possible and if the top-level length (A057515(n)) is odd, then apply *A069770 to the last branch-point.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 15, 14, 16, 17, 18, 19, 20, 21, 9, 10, 22, 11, 12, 13, 39, 40, 41, 37, 38, 43, 42, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 23, 24, 59, 25, 26, 27, 60, 61, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 113, 112, 114, 115, 116
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Comments

This automorphism converts lists of even length (1 2 3 4 ... 2n-1 2n) to the form ((1 . 2) (3 . 4) ... (2n-1 . 2n)) and when applied to lists of odd length, like (1 2 3 4 5), i.e. (1 . (2 . (3 . (4 . (5 . ()))))), converts them as ((1 . 2) . ((3 . 4) . (() . 5))).

Crossrefs

Inverse: A130370. a(n) = A074685(A130372(n)) = A130376(A074685(n)). The number of cycles, number of fixed points, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A130377, LEFT(A019590), A130378 and A130379.

A074689 Permutation of natural numbers induced by the Catalan bijection gmA074689! acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 4, 5, 6, 22, 21, 17, 18, 20, 9, 10, 11, 12, 13, 14, 15, 19, 16, 64, 63, 58, 59, 62, 45, 46, 48, 49, 50, 54, 55, 61, 57, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 51, 52, 60, 56, 42, 43, 44, 47, 53, 196, 195, 189, 190, 194
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Crossrefs

Inverse of A074690. a(n) = A057163(A074685(A057163(n))). Cf. A074681-A074688. Occurs in A073200.

A130372 Signature permutation of a Catalan automorphism: apply *A074686 to the last subtree, if the root degree (A057515(n)) is odd.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 16, 22, 21, 19, 17, 18, 20, 23, 24, 25, 27, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 64, 63, 47, 58, 59, 62, 51, 52, 53, 46, 45, 56, 48, 49, 50, 60, 54, 55, 57, 61, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Crossrefs

Inverse: A130371. a(n) = A074686(A130369(n)) = A074686(A130376(A074685(n))) = A130370(A130376(A130369(n))).
Showing 1-10 of 13 results. Next