cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073726 Primitive irreducible trinomials: x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 31, 33, 35, 36, 39, 41, 47, 49, 52, 55, 57, 58, 60, 63, 65, 68, 71, 73, 79, 81, 84, 87, 89, 93, 94, 95, 97, 98, 100, 103, 105, 106, 108, 111, 113, 118, 119, 121, 123, 124, 127, 129, 130, 132, 134, 135, 137, 140, 142, 145, 148, 150, 151, 153, 159, 161, 167, 169, 170, 172, 174, 175, 177, 178, 183, 185, 191, 193, 194, 198, 199, 201
Offset: 1

Views

Author

Keywords

Comments

Start is similar to A194125; first terms here but missing there are 140, 212, 236.

References

  • S. W. Golomb, "Shift Register Sequences", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.

Crossrefs

See A073571 for irreducible trinomials and A001153 for primitive Mersenne trinomials (and references). See A074744 for values of k.
Cf. A194125 (n such that x^n+(1+x)^w over GF(2) is primitive for some w).

Programs

  • Magma
    A073726 := function(n) for k := 1 to n-1 do if IsPrimitive(x^n+x^k+1) then return true; end if; end for; return false; end function; l := []; for n := 1 to 100 do if A073726(n) then l := Append(l,n); end if; end for; l;
  • Maple
    A073726 := proc(n) local k,m: option remember: if(n=1)then return 2: else m:=procname(n-1)+1: while(true)do for k from 1 to m-1 do if Primitive(x^m+x^k+1) mod 2 then return m: fi: od: m:=m+1: od: fi: end:
    seq(A073726(n),n=1..20); # Nathaniel Johnston, Apr 26 2011
  • Mathematica
    okQ[n_] := AnyTrue[Range[n-1], PrimitivePolynomialQ[x^n + x^# + 1, 2]&];
    Select[Range[201], okQ] (* Jean-François Alcover, Aug 19 2019 *)

Extensions

a(49)-a(58) from Nathaniel Johnston, Apr 26 2011

A132454 First primitive GF(2)[X] polynomials of degree n and minimal number of terms, expressed as -k for X^n+X^k+1, else with X^n suppressed.

Original entry on oeis.org

1, -1, -1, -1, -2, -1, -1, 29, -4, -3, -2, 83, 27, 43, -1, 45, -3, -7, 39, -3, -2, -1, -5, 27, -3, 71, 39, -3, -2, 83, -3, 197, -13, 281, -2, -11, 83
Offset: 1

Views

Author

Francois R. Grieu, Aug 22 2007

Keywords

Comments

More precisely: when there exists k, 0

Examples

			a(10)=-3, representing the GF(2)[X] polynomial X^10+X^3+1, because this degree 10 trinomial is primitive, contrary to X^10+X^1+1, X^10+X^2+1 and X^10+X^2+X^1.
		

Crossrefs

Either of 2^n+2^(-a(n))+1 or 2^n+a(n) belongs to A091250. If there exists m such that n = A073726(m), then a(n) = -A074744(m); otherwise a(n) = A132450(n). A132453(n) gives the primitive polynomial corresponding to a(n). Cf. A132448, similar, with no restriction on number of terms. Cf. A132450, similar, with restriction to at most 5 terms. Cf. A132452, similar, with restriction to exactly 5 terms.

A186440 Number of prime divisors (counted with multiplicity) of n such that the primitive irreducible trinomial x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n (A073726).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 3, 2, 2, 1, 2, 3, 1, 1, 2, 2, 4, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 2, 3, 1, 1, 1, 4, 4, 2, 1, 2, 2, 2, 1, 3, 4, 1, 3, 2, 5, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 4, 2, 4, 1, 4, 2, 2, 3, 4, 1, 3, 2, 2, 1, 2, 3
Offset: 1

Author

Jonathan Vos Post, Feb 21 2011

Keywords

Examples

			a(48) = 4 because A073726(48) = 100, and Omega(100 = 2^2 * 5^2) = 4.
		

Crossrefs

Cf. A001222, A073726, See A074744 for corresponding values of k.

Formula

a(n) = bigomega(A073726(n)) = Omega(A073726(n)) = A001222(A073726(n)).

Extensions

a(49) - a(78) from Nathaniel Johnston, Apr 26 2011
Showing 1-3 of 3 results.