A074789 Partial sums of usigma(n)^2: square of the sum of unitary divisors of n.
1, 10, 26, 51, 87, 231, 295, 376, 476, 800, 944, 1344, 1540, 2116, 2692, 2981, 3305, 4205, 4605, 5505, 6529, 7825, 8401, 9697, 10373, 12137, 12921, 14521, 15421, 20605, 21629, 22718, 25022, 27938, 30242, 32742, 34186, 37786, 40922, 43838
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio.
- László Tóth, An asymptotic formula concerning the unitary divisor sum function, Stud. Univ. Babes-Bolyai, Math., Vol. 34, No. 2 (1989), pp. 3-10; entire volume.
Programs
-
Mathematica
Accumulate[Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Feb 04 2019 *)
-
PARI
A034448(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]);} lista(nmax) = {my(s = 0); for(n = 1, nmax, s += A034448(n)^2; print1(s, ", "));} \\ Amiram Eldar, Jul 24 2024
Formula
a(n) = Sum_{k=1..n} usigma(k)^2 = Sum_{k=1..n} A034448(k)^2.
Asymptotic expression: a(n) = Sum_{k<=n} usigma(k)^2 = (zeta(2)*zeta(3)*alpha_1/3)*n^3 + O(n^2*log(n)^4), alpha_1 = Product_{p prime} (1+1/p^2-2/p^3-1/p^4-2/p^5+3/p^6), zeta(2) = A013661 and zeta(3) = A002117.
alpha_1 = 1.001619936509160661474009830789... . - Amiram Eldar, Jul 24 2024