cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074789 Partial sums of usigma(n)^2: square of the sum of unitary divisors of n.

Original entry on oeis.org

1, 10, 26, 51, 87, 231, 295, 376, 476, 800, 944, 1344, 1540, 2116, 2692, 2981, 3305, 4205, 4605, 5505, 6529, 7825, 8401, 9697, 10373, 12137, 12921, 14521, 15421, 20605, 21629, 22718, 25022, 27938, 30242, 32742, 34186, 37786, 40922, 43838
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Feb 04 2019 *)
  • PARI
    A034448(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += A034448(n)^2; print1(s, ", "));} \\ Amiram Eldar, Jul 24 2024

Formula

a(n) = Sum_{k=1..n} usigma(k)^2 = Sum_{k=1..n} A034448(k)^2.
Asymptotic expression: a(n) = Sum_{k<=n} usigma(k)^2 = (zeta(2)*zeta(3)*alpha_1/3)*n^3 + O(n^2*log(n)^4), alpha_1 = Product_{p prime} (1+1/p^2-2/p^3-1/p^4-2/p^5+3/p^6), zeta(2) = A013661 and zeta(3) = A002117.
alpha_1 = 1.001619936509160661474009830789... . - Amiram Eldar, Jul 24 2024