cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A057434 a(n) = Sum_{k=1..n} phi(k)^2.

Original entry on oeis.org

1, 2, 6, 10, 26, 30, 66, 82, 118, 134, 234, 250, 394, 430, 494, 558, 814, 850, 1174, 1238, 1382, 1482, 1966, 2030, 2430, 2574, 2898, 3042, 3826, 3890, 4790, 5046, 5446, 5702, 6278, 6422, 7718, 8042, 8618, 8874, 10474, 10618, 12382, 12782
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2000

Keywords

Comments

Partial sums of A127473. - R. J. Mathar, Sep 29 2008

Crossrefs

Programs

  • Mathematica
    FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* Ivan Neretin, May 30 2015 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)^2); \\ Michel Marcus, Dec 20 2015

Formula

We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - Benoit Cloitre, Dec 22 2015
a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - Vaclav Kotesovec, Dec 18 2019

A072379 Sum_{k<=n} (sigma(k)^2), where sigma(k) denotes the sum of the divisors of k A000203.

Original entry on oeis.org

1, 10, 26, 75, 111, 255, 319, 544, 713, 1037, 1181, 1965, 2161, 2737, 3313, 4274, 4598, 6119, 6519, 8283, 9307, 10603, 11179, 14779, 15740, 17504, 19104, 22240, 23140, 28324, 29348, 33317, 35621, 38537, 40841, 49122, 50566, 54166, 57302
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002

Keywords

Crossrefs

Programs

  • Maple
    A072379 := proc(n)
        add( numtheory[sigma](k)^2,k=0..n) ;
    end proc:
    seq(A072379(n),n=1..80) ; # R. J. Mathar, Jul 09 2024
  • Mathematica
    Accumulate[Table[DivisorSigma[1, k]^2, {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)^2) \\ Michel Marcus, Jun 20 2013

Formula

Ramanujan's asymptotic formula: (5/6)*Zeta(3)*n^3+O(n^2*log(n)^2)
Showing 1-3 of 3 results.