cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A065464 Decimal expansion of Product_{p prime} (1 - (2*p-1)/p^3).

Original entry on oeis.org

4, 2, 8, 2, 4, 9, 5, 0, 5, 6, 7, 7, 0, 9, 4, 4, 4, 0, 2, 1, 8, 7, 6, 5, 7, 0, 7, 5, 8, 1, 8, 2, 3, 5, 4, 6, 1, 2, 1, 2, 9, 8, 5, 1, 3, 3, 5, 5, 9, 3, 6, 1, 4, 4, 0, 3, 1, 9, 0, 1, 3, 7, 9, 5, 3, 2, 1, 2, 3, 0, 5, 2, 1, 6, 1, 0, 8, 3, 0, 4, 4, 1, 0, 5, 3, 4, 8, 5, 1, 4, 5, 2, 4, 6, 8, 0, 6, 8, 5, 5, 4, 8, 0, 7, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Sum_{n <= x} A189021(n) ~ kx, where k is this constant. - Charles R Greathouse IV, Jan 24 2018
The probability that a number chosen at random is squarefree and coprime to another randomly chosen random (see Schroeder, 2009). - Amiram Eldar, May 23 2020, corrected Aug 04 2020

Examples

			0.428249505677094440218765707581823546...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.5.1, p. 110.
  • Manfred Schroeder, Number Theory in Science and Communication, 5th edition, Springer, 2009, page 59.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms+10]]; r[n_Integer] := LR[[n]]; (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n-1]/(n-1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - (2*p-1)/p^3) \\ Amiram Eldar, Mar 12 2021

Formula

Equals A065463 divided by A013661. - R. J. Mathar, Mar 22 2011
Equals A065473 divided by A065480. - R. J. Mathar, May 02 2019
Equals (6/Pi^2)^2 * Product_{p prime} (1 + 1/(p^3 + p^2 - p - 1)) = 1.1587609... * (6/Pi^2)^2. - Amiram Eldar, May 23 2020
Equals lim_{m->oo} (1/m) * Sum_{k==1..m} (phi(k)/k)^2, where phi is the Euler totient function (A000010). - Amiram Eldar, Mar 12 2021

Extensions

More digits from Vaclav Kotesovec, Dec 18 2019

A127473 a(n) = phi(n)^2.

Original entry on oeis.org

1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Number of maps of the form j |--> m*j + d with gcd(m, n) = 1 and gcd(d, n) = 1 from [1, 2, ..., n] to itself. - Joerg Arndt, Aug 29 2014
Right border of A127474.
Equals the Mobius transform (A054525) of A029939. - Gary W. Adamson, Aug 20 2008
From Jianing Song, Apr 14 2019: (Start)
a(n) is the number of solutions to gcd(xy, n) = 1 with x, y in [0, n-1].
Let Z_n be the ring of integers modulo n, then a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - x) (or equivalently, Z_n[x]/(x^2 + x)) with discriminant d = 1 (that is, a(n) is the size of the group G(n) = (Z_n[x]/(x^2 - x))*). Actually, G(n) is isomorphic to (Z_n)* X (Z_n)*. (End)

Examples

			a(5) = 16 since phi(5) = 4.
		

Crossrefs

Similar sequences: A082953 (size of (Z_n[x]/(x^2 - 1))*, d = 4), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

Formula

a(n) = A000010(n)^2.
Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011
Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020
Sum_{k>=1} (-1)^k/a(k) = (1/7) * A109695. - Amiram Eldar, Nov 11 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime}(1 - (2*p-1)/p^3) = A065464 / 3 = 0.142749... . - Amiram Eldar, Oct 25 2022
a(n) = Sum_{d|n} mu(n/d)*phi(n*d). - Ridouane Oudra, Jul 23 2025

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A072379 Sum_{k<=n} (sigma(k)^2), where sigma(k) denotes the sum of the divisors of k A000203.

Original entry on oeis.org

1, 10, 26, 75, 111, 255, 319, 544, 713, 1037, 1181, 1965, 2161, 2737, 3313, 4274, 4598, 6119, 6519, 8283, 9307, 10603, 11179, 14779, 15740, 17504, 19104, 22240, 23140, 28324, 29348, 33317, 35621, 38537, 40841, 49122, 50566, 54166, 57302
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002

Keywords

Crossrefs

Programs

  • Maple
    A072379 := proc(n)
        add( numtheory[sigma](k)^2,k=0..n) ;
    end proc:
    seq(A072379(n),n=1..80) ; # R. J. Mathar, Jul 09 2024
  • Mathematica
    Accumulate[Table[DivisorSigma[1, k]^2, {k, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)^2) \\ Michel Marcus, Jun 20 2013

Formula

Ramanujan's asymptotic formula: (5/6)*Zeta(3)*n^3+O(n^2*log(n)^2)

A361148 a(n) = phi(n)^4.

Original entry on oeis.org

1, 1, 16, 16, 256, 16, 1296, 256, 1296, 256, 10000, 256, 20736, 1296, 4096, 4096, 65536, 1296, 104976, 4096, 20736, 10000, 234256, 4096, 160000, 20736, 104976, 20736, 614656, 4096, 810000, 65536, 160000, 65536, 331776, 20736, 1679616, 104976, 331776, 65536, 2560000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Comments

In general, for k>=1, Sum_{m=1..n} phi(m)^k ~ c(k) * n^(k+1) / (k+1).
Table of the first twenty constants c(k):
c1 = 0.6079271018540266286632767792583658334261526480334792930736...
c2 = 0.4282495056770944402187657075818235461212985133559361440319...
c3 = 0.3371878737915899719616928161521582449491541277581639388802...
c4 = 0.2862564715115608911732883400866386479560747005250468681615...
c5 = 0.2550316684059564308661179534476184539887434047229867871927...
c6 = 0.2342690874743831026992085481001750961630443094403694748409...
c7 = 0.2194845388428573186801010214226853865762414525869501954550...
c8 = 0.2083553180392308846240883587603960475166426933863125773262...
c9 = 0.1996016550942289223053750541784521301740825495040856984950...
c10 = 0.1924764951305819663569723926235916851341834741671794581256...
c11 = 0.1865198318046079731059147989571847359151227252097897755685...
c12 = 0.1814343147960482243026212589426877406632573154701351352790...
c13 = 0.1770192204728143035012153190352692532613146649385520287635...
c14 = 0.1731338036872585521607716180505314246174563305338731073703...
c15 = 0.1696760784770144194638735708052066949428247152918280392147...
c16 = 0.1665700322333281768929516390245288052095235102037486400080...
c17 = 0.1637576294807392765019551841269187995536332906534705685240...
c18 = 0.1611936368897236567526886186599877745065426644021588804182...
c19 = 0.1588421683609925408830108209202958349394621277940566066627...
c20 = 0.1566743130878534775247182243921577941535243896576096188342...
c1 = A059956 = 6/Pi^2, c2 = A065464.
Conjecture: c(k)*log(k) converges to a constant (around 0.534).

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]^4, {n, 1, 50}]
  • PARI
    a(n) = eulerphi(n)^4;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - 4*p*X + 6*p^2*X - 4*p^3*X) / (1 - p^4*X))[n], ", "))

Formula

Multiplicative with a(p^e) = (p-1)^4 * p^(4*e-4).
Dirichlet g.f.: zeta(s-4) * Product_{primes p} (1 + 1/p^s - 4/p^(s-1) + 6/p^(s-2) - 4/p^(s-3)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.286256471511560891173288340086638647956074700525046868161...
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/((p-1)^4*(p^4-1))) = 2.20815077889083518654... . - Amiram Eldar, Sep 01 2023

A372633 a(n) = Sum_{j=1..n} Sum_{k=1..n} phi(j*k).

Original entry on oeis.org

1, 5, 19, 47, 115, 183, 369, 585, 927, 1271, 2021, 2557, 3817, 4813, 6101, 7749, 10581, 12381, 16395, 19147, 22855, 26795, 33901, 38141, 46081, 52729, 61711, 69487, 83851, 90731, 108341, 121749, 136929, 152065, 171097, 185257, 215101, 236377, 261553, 283153, 323993
Offset: 1

Views

Author

Seiichi Manyama, May 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[i*j], {i, 1, n}, {j, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 08 2024 *)
    s = 1; Join[{1}, Table[s += EulerPhi[n^2] + 2*Sum[EulerPhi[j*n], {j, 1, n-1}], {n, 2, 50}]] (* Vaclav Kotesovec, May 08 2024 *)
  • PARI
    a(n) = sum(j=1, n, sum(k=1, n, eulerphi(j*k)));

Formula

a(n) ~ c * n^4, where c = A065464 / 4 = 0.107062376419... . - Amiram Eldar, May 09 2024

A074789 Partial sums of usigma(n)^2: square of the sum of unitary divisors of n.

Original entry on oeis.org

1, 10, 26, 51, 87, 231, 295, 376, 476, 800, 944, 1344, 1540, 2116, 2692, 2981, 3305, 4205, 4605, 5505, 6529, 7825, 8401, 9697, 10373, 12137, 12921, 14521, 15421, 20605, 21629, 22718, 25022, 27938, 30242, 32742, 34186, 37786, 40922, 43838
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Feb 04 2019 *)
  • PARI
    A034448(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]);}
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += A034448(n)^2; print1(s, ", "));} \\ Amiram Eldar, Jul 24 2024

Formula

a(n) = Sum_{k=1..n} usigma(k)^2 = Sum_{k=1..n} A034448(k)^2.
Asymptotic expression: a(n) = Sum_{k<=n} usigma(k)^2 = (zeta(2)*zeta(3)*alpha_1/3)*n^3 + O(n^2*log(n)^4), alpha_1 = Product_{p prime} (1+1/p^2-2/p^3-1/p^4-2/p^5+3/p^6), zeta(2) = A013661 and zeta(3) = A002117.
alpha_1 = 1.001619936509160661474009830789... . - Amiram Eldar, Jul 24 2024

A356535 a(n) = Sum_{k=1..n} sigma_2(k)^2.

Original entry on oeis.org

1, 26, 126, 567, 1243, 3743, 6243, 13468, 21749, 38649, 53533, 97633, 126533, 189033, 256633, 372914, 457014, 664039, 795083, 1093199, 1343199, 1715299, 1996199, 2718699, 3142500, 3865000, 4537400, 5639900, 6348864, 8038864, 8964308, 10827533, 12315933, 14418433
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356533.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.

A356536 a(n) = Sum_{k=1..n} sigma_3(k)^2.

Original entry on oeis.org

1, 82, 866, 6195, 22071, 85575, 203911, 546136, 1119185, 2405141, 4179365, 8357301, 13188505, 22773721, 35220505, 57132266, 81279662, 127696631, 174756231, 259359435, 352134859, 495847003, 643907227, 912211627, 1160305628, 1551633152, 1969426752, 2600039296
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
    Accumulate[DivisorSigma[3,Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ zeta(7) * n^7 / 6.

A049454 a(n) = 1 + Sum_{i=1..n} phi(i)^2.

Original entry on oeis.org

1, 2, 3, 7, 11, 27, 31, 67, 83, 119, 135, 235, 251, 395, 431, 495, 559, 815, 851, 1175, 1239, 1383, 1483, 1967, 2031, 2431, 2575, 2899, 3043, 3827, 3891, 4791, 5047, 5447, 5703, 6279, 6423, 7719, 8043, 8619, 8875, 10475, 10619, 12383
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1+Sum[EulerPhi[i]^2,{i,n}],{n,0,50}] (* Harvey P. Dale, Mar 21 2020 *)
    Join[{1}, 1 + Accumulate[EulerPhi[Range[45]]^2]] (* Amiram Eldar, Dec 01 2024 *)
  • PARI
    a(n) = 1 + sum(i=1, n, eulerphi(i)^2); \\ Michel Marcus, Mar 07 2020

Formula

a(n) = A057434(n) + 1 for n >= 1. - Amiram Eldar, Dec 01 2024
Showing 1-10 of 11 results. Next