cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A372636 a(n) = Sum_{j=1..n} Sum_{k=1..n} phi(j*k) / phi(k).

Original entry on oeis.org

1, 5, 14, 31, 58, 93, 148, 219, 306, 407, 550, 695, 898, 1103, 1323, 1610, 1963, 2293, 2738, 3152, 3597, 4116, 4773, 5362, 6073, 6808, 7611, 8437, 9492, 10348, 11557, 12728, 13868, 15143, 16425, 17753, 19482, 21083, 22687, 24350, 26481, 28186, 30535, 32641
Offset: 1

Views

Author

Seiichi Manyama, May 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[EulerPhi[j*k], {j, 1, n}] / EulerPhi[k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 08 2024 *)
    s = 1; Join[{1}, Table[s += Sum[EulerPhi[j*n] / EulerPhi[j], {j, 1, n}] + Sum[EulerPhi[j*n], {j, 1, n-1}] / EulerPhi[n], {n, 2, 50}]] (* Vaclav Kotesovec, May 08 2024 *)
  • PARI
    a(n) = sum(j=1, n, sum(k=1, n, eulerphi(j*k)/eulerphi(k)));

Formula

a(n) ~ c * n^3, where c = A330596 / 2 = 0.374267629841... . - Amiram Eldar, May 09 2024

A372661 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} phi(i*j*k).

Original entry on oeis.org

1, 14, 98, 412, 1436, 3212, 8312, 17460, 34182, 57406, 107306, 161942, 277550, 406490, 581210, 850162, 1292018, 1701752, 2481476, 3216100, 4184464, 5406704, 7414512, 9119640, 11849180, 14736284, 18541664, 22500200, 28950168, 33410736, 42380976, 51166240, 60859420
Offset: 1

Views

Author

Seiichi Manyama, May 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[i*j*k], {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 40}] (* Vaclav Kotesovec, May 09 2024 *)
    s = 1; Join[{1}, Table[s += Sum[EulerPhi[i*j*n], {i, 1, n}, {j, 1, n}] + Sum[EulerPhi[i*j*n], {i, 1, n - 1}, {j, 1, n}] + Sum[EulerPhi[i*j*n], {i, 1, n - 1}, {j, 1, n - 1}], {n, 2, 40}]] (* Vaclav Kotesovec, May 09 2024 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, eulerphi(i*j*k))));

A372674 a(n) = Sum_{j=1..n} Sum_{k=1..n} tau(j*k).

Original entry on oeis.org

1, 8, 23, 54, 89, 162, 221, 326, 439, 596, 707, 964, 1107, 1352, 1645, 1976, 2179, 2630, 2865, 3390, 3859, 4316, 4615, 5406, 5883, 6444, 7059, 7892, 8299, 9430, 9877, 10794, 11635, 12424, 13361, 14852, 15415, 16324, 17349, 18952, 19587, 21342, 22017, 23486, 25177
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

For m>=1, Sum_{j=1..n} tau(m*j) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{j=1..n} tau(p*j) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[0, n^2] + 2*Sum[DivisorSigma[0, j*n], {j, 1, n - 1}], {n, 2, 50}]]

A372675 a(n) = Sum_{j=1..n} Sum_{k=1..n} sigma(j*k).

Original entry on oeis.org

1, 14, 59, 190, 401, 914, 1499, 2632, 4113, 6424, 8645, 13284, 17023, 23092, 30715, 40484, 48711, 63890, 75351, 95792, 116421, 139822, 159911, 199176, 229499, 267438, 309283, 364462, 404933, 482792, 532553, 611208, 688593, 772540, 862471, 998760, 1083615, 1200328
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[1, n^2] + 2*Sum[DivisorSigma[1, j*n], {j, 1, n - 1}], {n, 2, 50}]]

Formula

a(n) ~ c * n^4, where c = Pi^4 / (144*zeta(3)) = 0.56274...

A372635 a(n) = Sum_{j=1..n} Sum_{k=1..n} phi(j)*phi(k).

Original entry on oeis.org

1, 4, 16, 36, 100, 144, 324, 484, 784, 1024, 1764, 2116, 3364, 4096, 5184, 6400, 9216, 10404, 14400, 16384, 19600, 22500, 29584, 32400, 40000, 44944, 52900, 58564, 72900, 77284, 94864, 104976, 118336, 129600, 147456, 156816, 186624, 202500, 224676, 240100, 280900
Offset: 1

Views

Author

Seiichi Manyama, May 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; Accumulate[Table[EulerPhi[j], {j, 1, nmax}]]^2 (* Vaclav Kotesovec, May 08 2024 *)
  • PARI
    a(n) = sum(j=1, n, sum(k=1, n, eulerphi(j)*eulerphi(k)));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k))^2;

Formula

a(n) = A002088(n)^2.
a(n) ~ 9*n^4/(Pi^4). - Vaclav Kotesovec, May 08 2024
Showing 1-5 of 5 results.