cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372674 a(n) = Sum_{j=1..n} Sum_{k=1..n} tau(j*k).

Original entry on oeis.org

1, 8, 23, 54, 89, 162, 221, 326, 439, 596, 707, 964, 1107, 1352, 1645, 1976, 2179, 2630, 2865, 3390, 3859, 4316, 4615, 5406, 5883, 6444, 7059, 7892, 8299, 9430, 9877, 10794, 11635, 12424, 13361, 14852, 15415, 16324, 17349, 18952, 19587, 21342, 22017, 23486, 25177
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

For m>=1, Sum_{j=1..n} tau(m*j) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{j=1..n} tau(p*j) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[0, n^2] + 2*Sum[DivisorSigma[0, j*n], {j, 1, n - 1}], {n, 2, 50}]]

A372710 a(n) = Sum_{k=1..n} sigma(n*k).

Original entry on oeis.org

1, 10, 29, 81, 121, 302, 321, 630, 801, 1264, 1177, 2521, 1961, 3234, 4013, 5140, 4267, 8013, 5921, 10701, 10685, 12166, 10321, 20458, 15552, 19610, 21469, 28473, 20671, 40340, 25377, 40351, 39557, 43048, 45849, 70020, 43131, 59690, 63813, 89154, 58087, 106310
Offset: 1

Views

Author

Seiichi Manyama, May 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, k*n], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 13 2024 *)
  • PARI
    a(n) = sum(k=1, n, sigma(n*k));

Formula

Conjecture: a(n) ~ A372675(n) / 2 ~ Pi^4 * n^4 / (288*zeta(3)). - Vaclav Kotesovec, May 13 2024
Showing 1-2 of 2 results.