cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356534 a(n) = sigma_3(n)^2.

Original entry on oeis.org

1, 81, 784, 5329, 15876, 63504, 118336, 342225, 573049, 1285956, 1774224, 4177936, 4831204, 9585216, 12446784, 21911761, 24147396, 46416969, 47059600, 84603204, 92775424, 143712144, 148060224, 268304400, 248094001, 391327524, 417793600, 630612544, 594872100
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Crossrefs

Cf. A001158, A127473, A035116, A072861, A356536 (partial sums).

Programs

  • Mathematica
    Table[DivisorSigma[3, n]^2, {n, 1, 40}]
  • PARI
    a(n) = sigma(n, 3)^2; \\ Michel Marcus, Aug 11 2022

Formula

Dirichlet g.f.: zeta(s) * zeta(s-3)^2 * zeta(s-6) / zeta(2*s-6).
Multiplicative with a(p^e) = ((p^(3*e+3)-1)/(p^3-1))^2. - Amiram Eldar, Aug 11 2022

A356535 a(n) = Sum_{k=1..n} sigma_2(k)^2.

Original entry on oeis.org

1, 26, 126, 567, 1243, 3743, 6243, 13468, 21749, 38649, 53533, 97633, 126533, 189033, 256633, 372914, 457014, 664039, 795083, 1093199, 1343199, 1715299, 1996199, 2718699, 3142500, 3865000, 4537400, 5639900, 6348864, 8038864, 8964308, 10827533, 12315933, 14418433
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356533.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.
Showing 1-2 of 2 results.