cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322839 Numbers n with more prime factors (counted with multiplicity) than n+1.

Original entry on oeis.org

4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 45, 46, 48, 50, 52, 54, 56, 58, 60, 64, 66, 68, 70, 72, 76, 78, 80, 81, 82, 84, 88, 90, 92, 96, 100, 102, 104, 105, 106, 108, 110, 112, 114, 117, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2018

Keywords

Comments

First differs from A074827 in having 104.

Examples

			104 has four prime factors (2, 2, 2, 13), while 105 has only three (3, 5, 7), so 104 belongs to the sequence.
		

Crossrefs

Programs

A364718 Numbers k such that d(k) > d(k+1) > d(k+2), where d(n) is the number of divisors of n.

Original entry on oeis.org

45, 80, 81, 105, 165, 224, 225, 260, 261, 272, 315, 324, 345, 357, 384, 405, 435, 440, 441, 464, 465, 476, 477, 495, 512, 555, 560, 561, 567, 585, 594, 595, 620, 624, 627, 650, 651, 675, 704, 714, 715, 795, 800, 825, 836, 837, 855, 860, 861, 884, 885, 891, 896, 915
Offset: 1

Views

Author

Seiichi Manyama, Aug 04 2023

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = numdiv(n)>numdiv(n+1) && numdiv(n+1)>numdiv(n+2);

A364719 Numbers k such that d(k) > d(k+1) > d(k+2) > d(k+3), where d(n) is the number of divisors of n.

Original entry on oeis.org

80, 224, 260, 440, 464, 476, 560, 594, 650, 714, 836, 860, 884, 980, 1016, 1088, 1184, 1280, 1376, 1520, 1700, 1862, 1904, 2024, 2060, 2096, 2444, 2450, 2816, 2870, 2960, 2996, 3020, 3024, 3164, 3200, 3320, 3380, 3450, 3620, 3800, 3944, 3968, 4004, 4130, 4136, 4250
Offset: 1

Views

Author

Seiichi Manyama, Aug 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Differences@#&/@Partition[DivisorSigma[0,Range@5000],4,1], {?(#<0&)..}] (* _Hans Rudolf Widmer, Mar 11 2024 *)
  • PARI
    isok(n) = numdiv(n)>numdiv(n+1) && numdiv(n+1)>numdiv(n+2) && numdiv(n+2)>numdiv(n+3);

A364720 Numbers k such that d(k) > d(k+1) > d(k+2) > d(k+3) > d(k+4), where d(n) is the number of divisors of n.

Original entry on oeis.org

28974, 28975, 39150, 39444, 39445, 44863, 60775, 64015, 68875, 71995, 75174, 79135, 79848, 79849, 91195, 103615, 113904, 113905, 118825, 126294, 141955, 143143, 148974, 149823, 150955, 154375, 160734, 160735, 160974, 161343, 167824, 171925, 177330, 181194, 181195
Offset: 1

Views

Author

Seiichi Manyama, Aug 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten@Position[Differences@# &/@Partition[DivisorSigma[0, Range@1000000],5,1], {?(# < 0 &) ..}] (* _Hans Rudolf Widmer, Mar 11 2024 *)
  • PARI
    isok(n) = numdiv(n)>numdiv(n+1) && numdiv(n+1)>numdiv(n+2) && numdiv(n+2)>numdiv(n+3) && numdiv(n+3)>numdiv(n+4);

A074709 Base 4 expansion of 1/n has equal percentage of each digit 0,1,2,3.

Original entry on oeis.org

34, 194, 578, 866, 1889, 2017, 2434, 2722, 2897, 4993, 7393, 7394, 7841, 9826, 10562, 10882, 11777, 11969, 15074, 16993, 17282, 18818, 20129, 20417, 20849, 23041, 24322, 35426, 40193, 40289
Offset: 1

Views

Author

Donald S. McDonald, Sep 04 2002

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m,L,i;
      if n mod 4 = 0 then return false fi;
      if n::odd then
        m:= numtheory:-order(4,n);
        if m mod 4 <> 0 then return false fi;
        L:= convert(4^m+(4^m-1)/n,base,4)[1..m];
      else
        m:= numtheory:-order(4,n/2);
        if m mod 4 <> 0 then return false fi;
        L:= convert(4^m + 4*(4^m-1)/n,base,4)[1..m];
      fi;
      nops({seq(numboccur(i,L),i=0..3)}) = 1
    end proc:
    select(filter, [$3..10^5]); # Robert Israel, Dec 28 2020

Extensions

Corrected and extended by Robert G. Wilson v, Sep 06 2002
Showing 1-5 of 5 results.