A074831 Number of binary reversal primes less than 10^n.
3, 20, 101, 508, 3053, 20053, 141772, 1045600, 8038954, 63830588, 518935134, 4311185894
Offset: 1
Links
- Kevin S. Brown's Mathpages, Reflective and Cyclic Sets of Primes
- Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 34.
Programs
-
Mathematica
f[n_] := FromDigits[Reverse[IntegerDigits[n, 2]], 2]; NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; c = 0; k = 1; Do[ While[k = NextPrim[k]; k < 10^n, If[ PrimeQ[ f[k]], c++ ]]; k--; Print[c], {n, 16}]
-
Python
from sympy import isprime, primerange def is_bin_rev_prime(n): return isprime(int(bin(n)[2:][::-1], 2)) def a(n): return sum(is_bin_rev_prime(p) for p in primerange(1, 10**n)) print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 20 2021
Extensions
a(10)-a(11) from Chai Wah Wu, Oct 09 2018
a(12) from Chai Wah Wu, Oct 10 2018
Comments